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ABSTRACT

This paper adds a conditional factor structure to correlation dynamics, which presents
the covariance matrix by factor loadings and hence shrink the dimension of estima-
tion. Furthermore, the factor structure allows a closed-form solution of the inverse and
determinant of the covariance matrix, which simplifies the likelihood function of the
dynamic conditional correlation model. Taking the realized correlation from 5-minutes
data as the benchmark, the model implies a more precise correlation. In application,
the model generates out-of-sample portfolios with higher information ratio and a more
precise value at risk measurements.
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I. Introduction

Precise estimation of the covariance matrix among assets in both cross-section and times-

series dimensions is important for finance practitioners. It is widely employed in portfolio

allocation and risk management. However, this exercise in both aspects suffers from the

high-dimensional curse: As the opportunity set extends, the estimation of the covariance

matrix loses accuracy.

In terms of the cross-sectional or static estimation, an N by N covariance matrix estimated

from a T by N sample has a concentration ratio of N/T. That is, the estimator is noisy when

N is relatively larger than T. This dilemma is solved through the shrinkage method in Ledoit

and Wolf (2004) and Ledoit et al. (2012) because it corrects the bias of the covariance matrix

eigenvalues. Alternatively, one can insert a factor structure among the assets to estimate the

N by K (number of factors) factor loading instead, which improves the concentration ratio

to K/T, then, imply the covariance matrix Q as in Chan et al. (1999) and Ledoit and Wolf

(2003):

Q = BΣB′ +Qε

where B is the N by K factor loading, Σ is the covariance among factors, and Qε is a

diagonal covariance matrix among the residuals.

In this paper, I insert the same cross-section structure to the Dynamic Conditional Cor-

relation (DCC) model to solve high-dimensional dilemma that appears in the time-series

estimation, as documented by Engle and Sheppard (2001):

A multivariate generalized autoregressive conditional heteroskedasticity-type (GARCH) model

(from Engle (1982) to Engle (2002)) is specified as follows:

Qt = S(1− α− β) + βQt−1 + αεt−1ε
′
t−1

The model above is known as DCC because it decomposes the covariance to volatility and
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correlation using the “DeGarch” returns to εt = D−1
t rt, where Dt is a diagonal matrix of

each asset’s volatility. The covariance likelihood is decomposed to the single-assets GARCH

and conditional correlation likelihood. That is,

Lc(θ, φ) = −1

2

T∑
t=1

(−ε′tεt + log |Rt|+ ε′tR
−1
t εt)

where Rt = diag{Qt}−1Qtdiag{Qt}−1 is the normalized correlation matrix. Therefore,

dilemma is: As the number of assets increases, the optimization over R−1
t and |Rt| becomes

imprecise. Given the “DeGarch” intuition, I treat the terms “Covariance” and “Correlation”

as equivalent throughout the context.

As its primary contribution, I solve R−1
t and |Rt| in closed form by inserting a conditional

factor structure into the DCC model, which simplifies the likelihood estimation. I use a toy

model to sketch the spirit: Consider the most simple case under the capital asset priced

model (CAPM) by Sharpe (1964) and Lintner (1975). The set of asset returns is as follows:

ri = βirm + εi

The covariance between two different assets ri and rj is:

COV (ri, rj) = βiβjσ
2
m =

COV (ri, rm)COV (rj, rm)

σ2
m

The correlation between the i,j asset is:

ρi,j = ρi,mρj,m

In matrix format, the correlation matrix R is written as:

R = XX ′ + diag{1− ρ2
i,m}
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where X = {ρi,m}i=1...n is an N by 1 combination of each ρi,m and the correlation between

the ith asset and the market portfolio.

With factor structure, the N by N correlation matrix equals an outer product of an N by 1

vector plus a diagonal matrix. A matrix written in this format has a closed-form solution of

inverse and determinant, as demonstrated by Woodbury (1950) and Sherman and Morrison

(1950). I extend this simple model to a conditional and arbitrary K factor setting in the

main context.

I therefore combine techniques in two strands of literature mentioned above (cross-section

and time-series). The points below highlight the advantages of the model proposed herein:

a. Like the static cross-section model, the proposed model shrinks the {R}N×N matrix

to a factor loading matrix {X}N×K .

b. Though estimating a linear forecasting model for Xt, the correlation matrix takes a

quadratic form and, therefore, has more dynamites than the linear model.

c. Like DCC and Dynamical Equivalent Conditional Correlation (DECO), by applying a

two-step quasi-maximum likelihood estimate approach, the model establishes a well-known

inference property documented by White (1996).

To test the model performance, I compare my model against other variations of the DCC

models both in and out-of-sample: The in-sample performance is tested by comparing the

model-implied realized measured correlation (from 5-minutes data of stocks in the S&P500

index) under different loss functions. Following the conventional literature, I construct the

minimum variance portfolio, that is, tangency portfolio pseudo out-of-sample. Because the

model can generate conditional correlation together with the betas, there exist risk manage-

ment implications, such as computing the marginal value at risk for portfolios.

Like Engle et al. (2017), I can combine my model with the nonlinear shrinkage method in

Ledoit et al. (2012) to obtain a better estimation of the unconditional covariance—intercept

matrix S in DCC—while retaining the benefit from the conditional factor structure. Fol-

lowing the same intuition, I insert a certain structure to simplify the likelihood estimation.
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Here, Engle and Kelly (2012) assumes a pairwise equal correlation to solve R−1
t and |Rt|

in closed form, namely, DECO. Engle et al. (1990) and Engle (2009) also present a factor

structure, but it is not conditional and uses constant betas. This technique differs from the

current research.

The remaining paper is organized as follows: Section II presents the model and estimation

method. Section III describes the data and list of benchmark models used, and then reports

the in- and out-of-sample performance. Section IV concludes the study.

II. Model and Estimation Method

This section introduces the model specification and estimation steps. Within the same quasi-

maximum likelihood estimate approach, the estimators’ asymptotic distribution is included

in Appendix II.

I. Model Specification

I begin by taking a conditional factor setting. Assume there are K factors for all N assets.

The pricing kernel mt is modeled as:

mt = at−1 − b′t−1ft, (1)

where at−1 is a scalar, bt−1 is a K by 1 rotation vector, and ft is the K by 1 vector of

factors. Each stock rit and factor fkt satisfies the pricing equation:

Et−1[ritmt] = 1. (2)

Proposition 2.1 Excess Return

The expected excess return under conditions in (1) and (2) is:

Et−1[rit − rft ] = β′itEt−1[ft]. (3)
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βit = COVt−1(rit, ft)V ARt−1(ft)
−1. (4)

Et−1[ft] is a K by 1 vector of each factor risk premium and βit is the K by 1 dynamic

factor loading vector. In this equation, COVt−1(rit, ft) is the K by 1 vector of the conditional

covariance between r[it] and each factor; V ARt−1(ft) is the conditional variance matrix

among K factors.

Proposition 2.1 can be written in matrix format as follows:

Et−1[rt − rft ] = βtEt−1[ft]. (5)

βt = COVt−1(rt, ft)V ARt−1(ft)
−1, (6)

where COVt−1(rt, ft) is the N by K combination of all the assets’ factor covariance.

Based on proposition 2.1, I model the asset returns as follows:

rt − rft = βtft + εt (7)

Here, the following assumptions hold:

Factor Model Assumption

2a. f is exogenous: Et−1(ftεit) = 0 for any i; and

2b. Idiosyncratic returns are independent cross assets: Et−1(εitεjt) = 0, i 6= j.

The conditional factor setting in this section generalizes the static CAPM model to the

extent that it allows for time-varying betas. Further, it is correctly specified if all the risk

factors are added in the model. We then derive the conditional distribution of rt|t−1:

Proposition 2.2 Conditional Distribution
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rt|t−1 ∼ N(µt, Ht) (8)

µt = βtEt−1[ft] + rft (9)

Ht = COVt−1(rt, ft)V ARt−1(ft)
−1COVt−1(rt, ft)

′ + V ARt−1(εt) (10)

βt = COVt−1(rt, ft)V ARt−1(ft)
−1 (11)

Proposition 2.2 indicates that my method is robust for combining with the enormous class

of forecasting literature modeling Et−1[ft]. As a guide to practitioners, this method can

have both the conditional mean and the variance forecast as its inputs for constructing the

optimal portfolio. Because I emphasize conditional correlation, I treat the conditional mean

as constants and directly work with demeaned returns.

In terms of the second moment, proposition 2.2 shows that the N by N dynamic covariance

matrix can be shrunk to the N by K covariance matrix between asset returns and factors.

Under assumption 2a and 2b, by decomposing the conditional covariance Ht = DtRtDt,

where Dt is the diagonal matrix of each asset’s conditional volatility (“DeGarch”), I derive

Rt such that I obtain the closed-form solution of its inverse and determinant. This allows

me to construct the likelihood function, which, in turn, can be feasibly optimized.

Proposition 2.3 Conditional Correlation

Let Kt = Corrt−1(ft) be the conditional correlation matrix among K factors. Let Xt be the

N by K matrix written in partition form Xt = [ρ′1,t . . . ρ
′
n,t], where ρi,t is a K by 1 vector

representing the conditional correlation between ri and each factor.

Rt = XtK
−1
t X ′t + diag{1− ρ′i,tK−1

t ρi,t} (12)

6



R−1
t = diag{ 1

1− ρ′i,tK−1
t ρi,t

}

− diag{ 1

1− ρ′i,tK−1
t ρi,t

}Xt(Kt +X ′tdiag{
1

1− ρ′i,tK−1
t ρi,t

}Xt)
−1X ′tdiag{

1

1− ρ′i,tK−1
t ρi,t

}

(13)

|Rt| = det(Kt +X ′tdiag{
1

1− ρ′i,tK−1
t ρi,t

}Xt) det(K−1
t )

∏
i

(1− ρ′i,tK−1
t ρi,t) (14)

Proposition 2.3 works as a dynamic multi-factor extension of the toy model in section I.

If only a market risk exists, then the correlation among the factors is 1. This makes the

construction of the likelihood function in this study trivially simple. The spirit of these tricks

is to shrink an infeasible optimization problem, including the dynamic adjustment of an N

by N matrix inverse, to a K by K case. Thus, we set a conditional factor model and show

important tools for the likelihood simplification. The next section introduces the estimation

method based on these tools.

II. Estimation Method

Based on propositions 2.2 and 2.3, the estimation procedure is designed as follows:

Step 1: DCC Normalization

Set a joint DCC among the demeaned assets and factors:

r1
t|t−1 = [rt|t−1 ft|t−1]

r1
t|t−1 ∼ N(0, DtR

1
tDt)

(15)

The joint DCC is specified as follows:
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GARCH for each r1
i :

D2
t = diag{wi}+ diag{κi} ◦ rt−1r

′
t−1 + diag{λi} ◦D2

t−1

DeGARCH:

ε1
t = D−1

t r1
t

Qt = S(1− α− β) + αε1
t−1ε

1
t−1
′
+ βQt−1

R1
t = diag{Qt}−1Qtdiag{Qt}−1

(16)

Step 2: Reconstruct the Correlation

Partition the joint correlation R1
t :

R1
t =

 Rt Xt

X ′t Kt

 (17)

where, Rt and Kt are correlation matrixes among N assets and K factors, respectively,

and Xt = {ρi,k,t}N×K = [ρ′1,t . . . ρ
′
n,t] contains the correlations between each asset and factor.

This partition allows me to construct the likelihood function with the factor model-implied

correlation matrix RL
t in lieu of Rt from the traditional DCC.

RL
t = XtK

−1
t X ′t + diag{1− ρ′i,tK−1

t ρi,t} (18)

Step 3: Maximize the Likelihood

Construct the likelihood function based on RL
t . The likelihood is generated by parameters

S, α, β and, thus, optimized by the selection of these parameters.
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RL
t

−1
= diag{ 1

1− ρ′i,tK−1
t ρi,t

}

− diag{ 1

1− ρ′i,tK−1
t ρi,t

}Xt(Kt +X ′tdiag{
1

1− ρ′i,tK−1
t ρi,t

}Xt)
−1X ′tdiag{

1

1− ρ′i,tK−1
t ρi,t

}

(19)

det(RL
t ) = det(Kt +X ′tdiag{

1

1− ρ′i,tK−1
t ρi,t

}Xt) det(K−1
t )

∏
i

(1− ρ′i,tK−1
t ρi,t). (20)

The correlation likelihood is given as follows:

Lc(α, β, S) = −1

2

T∑
t=1

(−ε′tεt + log det(RL
t ) + ε′tR

L
t

−1
εt). (21)

Equations (18), (19), and (20) build a joint dynamic for RL
t as a function of Xt. As mentioned

in the introduction, the model presents the conditional correlation in a quadratic form as

it estimates a simple linear forecast model. The estimator’s asymptotic distribution can be

derived similar to DCC, as shown in Appendix II.

III. Alternative Estimation Method: MacGyver

A joint likelihood estimate is more efficient, though it requires high computation power. To

address this drawback, Engle (2009) proposed a “MacGyver” method to separately estimate

N(N−1)
2

pairwise DCC, and then take the αandβ from the average among all the pairwise

αiandβi. Though this method requires lower computation power, it not as efficient.

Similarly, one can always implement the method herein in an easier manner: In lieu of

building the full matrix dynamic, separately estimate N by K pairs of the bivariate DCC
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model to obtain each ρi,k,t, and then build Rt by (18):

∀i,∀k, Vi,k = [ri;Fk], build n× k pairs of DCC for Vi,k (22)

qi,k,t = si,k + αi,kεi,k,t−1ε
F
k,t−1 + βiqi,k,t−1 (23)

ρi,k,t =
qi,k,t√
σ2
i,th

F
k,t

(24)

Xt = {ρi,k,t}N×K = [ρ′1,t . . . ρ
′
n,t] (25)

Rt = XtK
−1
t X ′t + diag{1− ρ′i,tK−1

t ρi,t} (26)

∀k, αk = f(αi,k), βk = f(βi,k) (27)

Like the MacGyver DCC, the estimates from this method have an unknown inference prop-

erty. Rather than N(N−1)
2

pairs for the DCC, my model only requires N times K pairs of

estimation.

III. Empirical Results

In this section, two datasets of the constituents returns from S&P500 index are used to test

the model performance for measuring correlation. The first is the 5-minutes price data from

2010 to 2017. After cleaning up the data, 377 stocks returns are available in the full sample.

I use this high-frequency dataset to compute the realized correlation as the benchmark, and

then compare it with the model-implied under certain loss functions. The second is the

daily returns of S&P500 index constituents from 2000 to 20181 , used to form out-of-sample

portfolios.

I attempt to include some representative models as candidate estimators:

• DCC: original Dynamic Conditional Correlation Model

• DECO: Dynamic Equicorrelation Model, as in Engle and Kelly, 2012

1The original data is from 2000 to 2015, with 395 assets that with full history during this period. We then extend our sample
by combining new data from 2015 to 2018, with 449 assets.
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• DCC–NLS: DCC with nonlinear shrinkage, as in Engle et al. (2017)

• Model: The model proposed in this study; conditional factor structured.

• Model–NLS: The model proposed in this study with nonlinear shrinkage.

Without loss of generality, I use the S&P500 index value-weighted return as the only factor.

The trade-off between single and multiple factors is clear: More factors ensure the validity of

exogeneity and independence among idiosyncratic returns. The single factor model is more

parsimonious for estimation and, thus, less noisy.

I. Loss against Realized Correlation

Based on the high-frequency covariance matrix theory (see Barndorff-Nielsen and Shephard

(2004)), I compute the realized correlation Rrealized
t and the average correlation of a matrix

as follows:

Rrealized
t =

1

nt

nt∑
i=0

rt+i∆r
′
t+i∆ (28)

ρ̄t =
∑
i 6=j

∑
j

Rt(i, j)
2

n(n− 1)
(29)

where nt is the number of small-time intervals in each unit time.

I further define several loss functions to compare the accuracy of the model-implied

correlation:

• Squared Error for the Average Correlation ρ̄t:

SEt = (ρt − ρrealizedt )2. (30)

• Mean Squared Error:
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MSEt =
2

N(N − 1)

∑
i 6=j

∑
j

(Rt(i, j)−Rrealized
t (i, j))2. (31)

• Mean Absolute Error:

MAEt =
2

N(N − 1)

∑
i 6=j

∑
j

| (Rt(i, j)−Rrealized
t (i, j) | (32)

• Quasi-Normal Likelihood Error:

QLt = detRt − log(detRt)− detRrealized
t (33)

Rt in these functions denotes the model-implied correlations and Rrealized
t is measured

by 5-minute returns.

The loss of the models against the benchmark over time is reported in Table 1.

[Insert Table 1 here]

Panel A shows the average loss function values of different models and Panel B reports the

t-statistics of each model’s loss against the DCC model. In general, a nonlinear shrinkage

intercept does improve the accuracy of the models. The DCC–NLS and DECO models win

over the original DCC under certain loss functions. My model and its combination with the

nonlinear shrinkage has the smallest loss and wins over the original DCC model compared

with the other models.

In addition, my model naturally yields a dynamic factor loading βt. Like the partition of

conditional correlation matrix, I derive βt by decomposing the conditional covariance matrix

H1
t = V ARt−1([rt ft]):
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H1
t =

 Ht COVt−1(rt, ft)

COVt−1(rt, ft)
′ V ARt−1(ft)

 (34)

βt = COVt−1(rt, ft)V ARt−1(ft)
−1 (35)

Equation (34) eases the practical applications in the following sections.

II. Model Implication

II.1. Risk Management: Marginal Value at Risk

I now demonstrate how my method applies to risk management for allocating the value at

risk of a portfolio. Unlike an allocation problem that determines the optimal weight, a risk

management task takes the portfolio weights as given and analyzes the effect of altering asset

positions marginally on the portfolio risk.

For any portfolio with N assets:

rpt =
N∑
i=1

witrit (36)

The joint relationship between assets and the portfolio returns is depicted by a conditional

factor model:

rit = βitrpt + εit (37)

βit = COVt−1(rit, rpt)V ARt−1(rpt)
−1 (38)

This leads to:
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N∑
i=1

witβit = 1,∀t (39)

Equation (39) allows us to link each asset’s contribution to the total risk through βit. This

argument falls in line with the definition of the marginal value at risk: ∆V aRit = ∂V aRpt

∂witWt
is

a partial derivative that measures how a dollar position adjustment shifts the total value at

risk. A marginal value at risk (with confidence level θ) is then defined as follows:

∆V aRit =
∂V aRpt

∂witWt

= Zθ
∂σpt
∂wit

= Zθβitσpt (40)

where Zθ is the critical value for normal distribution, Wt is the total wealth, σpt is the

conditional total volatility, and βit is the dynamic portfolio risk loading. Equation (39) and

(40) indicate that:

V aRpt

Wt

= Zθσpt =
N∑
i=1

witβitZθσpt =
N∑
i

wit∆V aRit (41)

Equation (41) gives a clear decomposition of each asset’s contribution to the portfolio’s unite

money value at risk. I take the S&P500 5-minutes data to construct a portfolio weighted by

their market capital, and then estimate the joint correlation among all the stocks and the

portfolio. The performance of the models is measured comparing it with the value at risk

from the realized covariance matrix:

∆V aRrealized
it = Zθβ

realized
it σrealizedpt

βrealizedit = COVt−1(rit, rpt)
realized{V ARt−1(rpt)

realized}−1

(42)

I compute the marginal value at risk for each asset with my model, the combination of

my model with nonlinear shrinkage and the factor DCC model with the MacGyver method
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(which also yields dynamic betas by pairwise estimation). Then, the capital weighted square

errors, absolute errors, are computed as follows:

MSEV aR
t = (

N∑
i

wit∆V aRit −
N∑
i

wit∆V aR
realized
it )2

MAEV aR
t =|

N∑
i

wit∆V aRit −
N∑
i

wit∆V aR
realized
it |

(43)

The average error over time is reported in Table 1, Panel C. Unlike the loss measured in

Panels A and B, the combination of nonlinear shrinkage improves the accuracy substantially.

This is because I measure the average accuracy of the N asset dynamics in lieu of all the

N(N−1)
2

elements in the correlation matrix. The benefit of a precise intercept estimation is

often important for reliable practical work.

II.2. Portfolio Allocation

Based on the mean-variance utility developed in Markowitz (1952), the conditional mean

and variance is specified as in proposition 2.2. I also assume a constant risk-free rate for

convenience.

rt|t−1 ∼ N(µt, Ht) (44)

µt = βtEt−1[ft] + rf (45)

Ht = COVt−1(rt, ft)V ARt−1(ft)
−1COVt−1(rt, ft)

′ + V ARt−1(εt) (46)

βt = COVt−1(rt, ft)V ARt−1(ft)
−1 (47)

By construction, my model can yield the first moment forecast by estimate Et−1[ft] in lieu of

the entire cross-section of expected returns Et−1[rt]. One can simply combine a risk premium

forecast model with my method to derive better portfolios. Because I focus on forecasting
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the conditional variance, I simply take the historical average risk premium times dynamic

factor loading as the expected return, µ̂t = βtft. For all my models, because there is no

dynamic factor loading, the expected return is given as historical means µ̂t = rt.

Then, three target portfolios are defined as:

• Global Minimum Variance Portfolio:

ŵGMV,t = arg minw′Htw s.t w′~1 = 1 (48)

ŵGMV,t =
H−1
t
~1

~1′H−1
t
~1

(49)

• Minimum Variance Portfolio (with a required return q, set q = 0.1) (MV):

ŵMV,t = arg minw′Htw s.t w′~1 = 1 w′µ > q. (50)

ŵMV,t =
C − qB
AC −B2

H−1
t
~1 +

qA−B
AC −B2

H−1
t µt (51)

where A = ~1′H−1
t
~1, B = ~1′H−1

t µt, C = µ′tH
−1
t µt.

• Tangency Portfolio:

ŵTGC,t = arg maxw′(µt − rf )−
1

2
γw′Htw s.t w′~1 = 1 (52)

ŵTGC,t =
H−1
t (µt − rf )

~1′H−1
t (µt − rf )

(53)

I then construct monthly updating portfolios for all the candidates listed before. The pro-

cedure is set as follows:
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Step 1 : Take the end of t month’s last day forecast µt+1, Ht+1 to construct portfolios

̂wGMV,t+1, ŵMV,t+1, ̂wTGC,t+1.

Step 2 : Pseudo out-of-sample test the performance and use the realized daily returns

in the t + 1 month (averagely 22 days per month) to compute all the portfolios returns,

standard deviations, and Sharpe ratios.

Step 3: Include the t + 1 month returns in the sample based on a 1,000-day rolling

window. This yields the forecast µt+2, Ht+2, and then return to step 1.

Following this recursive pseudo out-of-sample method, I report the average performance over

time of the three portfolios generated by the models in Table 2:

[Insert Table 2 here]

From Table 2, I find that, on average, my model and the model with nonlinear shrinkage

produce lower volatility portfolios and higher information ratio/Sharpe ratio. Consistent

with the literature, both DCC–NLS and DECO produce better results than DCC does.

IV. Conclusions

The study applies the conditional factor model to multivariate covariance models. It com-

bines both cross-section and time-series features of the covariance models to solve the high-

dimensional curse.

To improve the methodology on mean-variance allocation, my method incorporates the liter-

ature on conditional mean forecasting. Under my framework, the expected return forecasting

task is reduced to risk premium forecasting. For professions with strong intuitions on what

creates a risk premium, the method is sound for practical use.

As shown in the empirical work, a single factor specification, conditional CAPM setting

generates a robust in- and out-of-sample covariance fit. However, in terms of asset pricing

research, it is important to further study what factors drive correlation among assets with

the proposed method. The model should be extended to a vaster class of risk factor literature
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as a test of this factor’s power to create cross-sectional co-movement. My method thus opens

a new channel to test conditional asset pricing models within the second moment.

This study emphasizes the method’s performance with a single factor. What factors to be

added in the model and to what extend can adding factors increase the prediction power of

the model remain open questions for future research.
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Appendices

I. Proof of the Conditional Factor Model

Proof of Proposition 2.1

Equation (2) leads to:

rft = 1/Et−1[mt] (54)

1 = Et−1[ritmt] = COVt−1(rit,mt) + Et−1[rit]Et−1[mt] (55)

⇒ Et−1[rit − rft ] = −COVt−1(rit,mt)/Et−1[mt] (56)

Combine with the pricing kernel in (1):

Et−1[rit − rft ] = b′t−1COVt−1(rit, ft)/Et−1[mt] (57)

By assuming each factor satisfies the pricing equation:

Et−1[ft − rft ] = b′t−1V ARt−1(ft)/Et−1[mt] (58)

As an extension of proof 2.1, let HK
t = V ARt−1(ft) be the conditional covariance matrix

of factors and COVt−1(rit, ft) be the k by 1 vector containing all the conditional covariance

between rit and each fkt. Then, based on assumptions 2a and 2b:

Proof of Proposition 3.2
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∀i 6= j, ri,t = f ′tβit + εi,t, rj,t = f ′tβjt + εj,t (59)

COVt−1(rit, rjt) = β′iV ARt−1(ft) = β′iH
K
t βj (60)

COVt−1(rit, ft)
′ = β′iV ARt−1(ft) = β′iH

K
t (61)

COVt−1(rjt, ft)
′ = β′jV ARt−1(ft)) = β′jH

K
t (62)

⇒ COVt−1(rit, ft)
′(HK

t )−1COVt−1(rjt, ft) = COVt−1(rit, rjt) (63)

Decompose HK
t to DK

t KtD
K
t , and then divide (63) by σi,tσj,t:

1

σi,t
COVt−1(rit, ft)

′(DK
t )−1K−1

t (DK
t )−1COVt−1(rjt, ft)

1

σj,t
= ρi,j,t (64)

Note that, by definition, (DK
t )−1COVt−1(rit, ft)

1
σi,t

= ρi,t is the K by 1 vector containing all

the correlations between rit and each fkt. Thus,

ρi,j,t = ρ′i,tK
−1
t ρj,t. (65)

Equation (65) can be extended to matrix form:

Define Xt as the N×K matrix containing every Corrt−1(rit, fkt). Then, Rt can be presented

by XtK
−1
t X ′t plus an adjustment term for diagonal elements:

Rt = XtK
−1
t X ′t + diag{1− ρ′i,tK−1

t ρi,t}

Derive the closed-form solution of R−1
t and |Rt| by applying the following theorem:

Theorem Woodbury Identity

(A+ UCV ′)−1 = A−1 − A−1U(C−1 + V ′A−1U)−1V ′A−1 (66)

det(A+ UCV ′) = det(C−1 + V ′A−1U) det(C) det(A) (67)
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Proof of Proposition 3.3

Rt = XtK
−1
t X ′t + diag{1− ρ′i,tK−1

t ρi,t} (68)

Set A = diag{1− ρ′i,tK−1
t ρi,t}, U = V = Xt, C = K−1

t :

A−1 = diag{ 1
1−ρ′i,tK

−1
t ρi,t

} (69)

det(A) =
∏

i(1− ρ′i,tK
−1
t ρi,t) (70)

(C−1 + V ′A−1U) = Kt +X ′tdiag{ 1
1−ρ′i,tK

−1
t ρi,t

}Xt (71)

(72)

which leads to:

R−1
t = diag{ 1

1− ρ′i,tK−1
t ρi,t

}

− diag{ 1

1− ρ′i,tK−1
t ρi,t

}Xt(Kt +X ′tdiag{
1

1− ρ′i,tK−1
t ρi,t

}Xt)
−1X ′tdiag{

1

1− ρ′i,tK−1
t ρi,t

}

(73)

det(Rt) = det(Kt +X ′tdiag{
1

1− ρ′i,tK−1
t ρi,t

}Xt) det(K−1
t )

∏
i

(1− ρ′i,tK−1
t ρi,t) (74)
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II. Statistical Inference

The likelihood is decomposed into a GARCH part and a correlation part:

L1(θ) = −1

2

∑
t

n∑
i=1

(log(2π) + log(hi,t) +
r2
i,t

hi,t
)− 1

2

∑
t

(log(2π) + log(hm,t) +
r2
m,t

hm,t
)

L2(θ, φ) = Lc(θ, φ) = −1

2

T∑
t=1

(−ε′tεt + log |Rt|+ ε′tR
−1
t εt)

log f1,t = −1

2

n∑
i=1

(log(2π) + log(hi,t) +
r2
i,t

hi,t
)− 1

2
(log(2π) + log(hm,t) +

r2
m,t

hm,t
)

log f2,t =
1

2
(log |Rt|+ ε′tR

−1
t εt)

(75)

White (1996) Theorem 6.1

Under assumptions C.1–C.6,

√
T (γ̂ − γ∗) ∼A N(0, A∗−1BA∗−1)

,

where A∗ =

 E[OθθL1(rt, θ
∗)] 0

.E[OθφL2(rt, θ
∗, φ∗)] E[OθθL2(rt, θ

∗, φ∗)]

.

and

B∗ = var(T−
1
2

∑
t(s
∗
1,t
′, s∗2,t

′)) ,

where s∗1,t = E[OθL1(rt, θ
∗)] and s∗2,t = E[OφL1(rt, θ

∗, φ∗)].

Write assumptions in White (1996) and Engle and Kelly (2012):

Assumptions C.1

(a) For all θ ∈ Θ, φ ∈ Φ, E[log f1,t(rt, θ)] and E[log f2,t(rt, θ, φ)] exist and are finite, ∀t;

(b) E[log f1,t(rt, θ)] and E[log f2,t(rt, θ, φ)] are continuous on Θ and Φ, ∀t; and

(c) {log f1,t(rt, θ)} and {log f2,t(rt, θ, φ)} each obey the strong uniform law of large num-

ber.

Assumptions C.2
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f1,t and f2,t are each twice continuously differentiable on Θ and Φ, ∀t.

Assumptions C.3

For all θ ∈ Θ, φ ∈ Φ, E[OθL1(rt, θ)] <∞ and E[OφL2(rt, θ, φ)] <∞, ∀t.

Assumptions C.4

(a) For all θ ∈ Θ, φ ∈ Φ, E[OθθL1(rt, θ)] <∞ and E[OφφL2(rt, θ, φ)] <∞;

(b) E[OθθL1(rt, θ)] and E[OφφL2(rt, θ, φ)] are continuous on Θ and Φ;

(c) {O′θs1,t(rt) = Oθθ log f1(rt, θ)} and {O′φs2,t(rt) = Oφφ log f2(rt, θ, φ)}; and

(d) A∗ is negative definite.

Assumptions C.5

E[L1(rt, θ)] is uniquely maximized by θ∗ interior to Θ, and E[L2(rt, θ, φ)] is uniquely

maximized by φ∗ interior to Φ.

Assumptions C.6

{(T− 1
2 s∗1,t

′, T−
1
2 s∗2,t

′)} ≡ {(T− 1
2O′θL1(rt, θ

∗), T−
1
2O′φL2(rt, θ

∗, φ∗))} obeys the central limit

theorem.

Like DECO, the studied model ensures identification as long as each pairwise DCC is properly

identified.
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Table 1

Average Loss of each model and T-stats against DCC

Panel A :Loss Under Different Measures

DCC DCC NLS DECO Model Model NLS

SEt 0.010 0.010 0.010 0.007 0.007

MSEt 0.078 0.078 0.109 0.065 0.065

MAEt 0.222 0.222 0.222 0.199 0.199

QLt -74.236 -68.768 -71.717 -17.769 -18.377

Panel B: T-stats of Loss(DCC)-Loss(models)

DCC NLS DECO Model Model NLS

SEt -9.082 1.689 41.048 39.172

MSEt -16.399 -55.980 40.390 42.775

MAEt 1.496 0.916 50.499 53.437

QLt 22.245 16.434 22.303 22.297

Panel C: Loss of Portfolio VaR

DCC(MacGyver) Model Model NLS

MSEV aR
t 0.2888 0.2403 0.8884

MAEV aR
t 0.4958 0.4665 0.1244



Table 2

2001-2018 Daily data. Monthly means, standard deviations IR(information

ratio) and sharp ratio are annualized and presented in percent.

Panel A :Global Minimum Variance Portfolio (GMV)

Deco DCC DCC NLS Model Model NLS

Mean % 20.059 22.712 21.614 15.590 15.387

Std % 15.213 13.765 12.469 11.792 11.705

IR 0.324 0.595 0.680 0.992 0.981

Panel B :Minimum Variance Portfolio(MV)

Deco DCC DCC NLS Model Model NLS

Mean % 24.108 21.519 19.986 14.819 12.169

Std % 14.718 13.432 12.090 12.703 11.340

IR 0.684 0.867 0.958 1.428 1.508

Panel C :Tagency Portfolio(TGC)

Deco DCC DCC NLS Model Model NLS

Mean % -20.163 -36.860 -20.945 11.007 11.156

Std % 36.315 112.290 28.423 15.430 15.555

IR 0.602 0.012 0.875 1.447 1.449

Sharpe Ratio 0.550 -0.015 0.806 1.342 1.345
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