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1 Introduction

According to the arbitrage pricing theory (APT), only a few common factors in asset

returns are tied to risk premiums, while idiosyncratic risks, as the ”residuals” relative to

these factors, are diversified away. This classical view is widely accepted in asset pricing

theory as it implies a tested factor structure in expected returns. However, this may not

hold true as the diversification of idiosyncratic risks does not always occur in practice.

The diversification assumption requires a thin-tailed distribution of firm size, meaning

that no firm is large enough for its firm-specific shocks to have a systematic impact and

be tied to the risk premium.

Contrary to the assumption of diversification, I have found evidence of firms that

are significantly larger than others in the US stock market, with high weights in the

market portfolio and a fat-tailed distribution of stock market values. I refer to this

phenomenon as the stock market granularity and theoretically show it breaks the diver-

sification of idiosyncratic risks in the market portfolio.1 Furthermore, large firms have

their idiosyncratic risks less diversified than small firms and have more risk premiums

tied to idiosyncratic risks.

The evidence of stock market granularity is striking and persistent over time. In

2020, the ten largest firms accounted for over a quarter of the total US stock market

value as shown in Figure 1. In addition, I listed the ten largest firms over decades from

the 1940s to the 2010s in Table 1 to show a level of granularity similar to Figure 1 over

time.2 Although the list of these large firms varies as production technology evolves,

they constantly have dominantly large market weights and break the diversification of

idiosyncratic risks. Therefore, I develop a theoretical framework to study how the gran-

ular channel of under-diversified idiosyncratic risks affects asset prices.

1The stock market granularity is consistent with the fat-tailed distribution of firms’ fundamental values documented in the
literature (number of employees in Axtell (2001), sales as a proxy of production value in Gabaix (2011), etc.) For my paper, mea-
suring granularity in the stock market is natural since it shows how firm-specific shocks can have systematic impacts by generating
fluctuations in the market portfolio.

2Specifically, I compute the average market weight of all firms available in each decade from the 1940s to 2010s.
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The first contribution of this paper is to demonstrate that granularity breaks the di-

versification of idiosyncratic risks assumed in APT theory and generates an idiosyncratic

risk premium in expected returns in addition to the factor risk premiums. The intuition

behind this result is based on the classical view in APT theory that there are two types

of risks in asset returns: factors, which are the common components of asset returns

that drive the strong correlation among assets, and idiosyncratic risks, which are firm-

specific and have a weak correlation. I incorporate granularity into this risk structure

and use a competitive equilibrium approach (see Dybvig (1983), Grinblatt and Titman

(1983), Connor and Korajczyk (1995)), where a representative agent holds the market

portfolio. With granularity, both these two types of risks are tied to the risk premium

since they all affect the wealth fluctuation of the representative investor, but they have

different economic meanings and empirical patterns.

The second contribution of this paper is to provide a novel and simple-to-test relation

between idiosyncratic risk and expected returns in the cross-section. The size-adjusted

idiosyncratic risk (product of an asset’s market weight and variance of idiosyncratic

shock) positively explains the expected returns, with various factors and characteristics

controlled. With granularity, large firms have market weights significantly higher than

small firms and therefore have more idiosyncratic risk premiums. This granular channel

of risk compensation in expected return is ignored by the factor models that assume

diversification of idiosyncratic risks and is empirically different from a factor risk pre-

mium, which is proportional to the factor risk exposure (”beta”). Specifically, a factor

driven by size states the opposite of my results, such that small firms have high factor

risk premiums due to high exposure to the factor risk.

Furthermore, my result of using the product of market weight and variance of id-

iosyncratic shock (Ivar hereafter) reconciles tests in the literature that use Ivar only to

explain how idiosyncratic risks affect asset returns. As a leading example, it explains the

”idiosyncratic risk premium puzzle” (IRP hereafter) that high Ivar firms have low risk-
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compensation in expected returns in the cross-section, investigated in Ang et al. (2006)

and Ang et al. (2009).3 Small firms have high levels of Ivar due to an inverse relation

between the firm size and the level of risk. When the granularity is significant, the size

difference among firms is substantial such that large firms account for most of the market

valuation, as shown in Figure 1 and small firms have negligible market weights. Con-

sequently, firms with high idiosyncratic risks tend to have negligible idiosyncratic risk

premiums due to low impacts on the market. Conversely, firms with low idiosyncratic

risks are large firms with high idiosyncratic risk premiums due to high market weights.

I find that the granular explanation of IRP is robust to measuring Ivar by various factor

models and works within groups of firms separated by size.

The third contribution of my analysis is to test the aggregate impact of granularity

on market returns. Tests in literature (see Campbell et al. (2001), Goyal and Santa-Clara

(2003), Bali et al. (2005)) measure the aggregate level of idiosyncratic risk and use it to

explain the aggregate variation of the stock market using a time-series approach. As a

separate channel, with the level of idiosyncratic risks controlled, a high level of granu-

larity implies less diversified idiosyncratic risk and hence should increase the aggregate

expected returns of the market portfolio. I measure the level of granularity by a Pareto

distribution and find this measure explains the time variation of market risk premium,

especially in longer time horizons, controlling for the measures of idiosyncratic risks in

the cited papers and additional predictors surveyed in Welch and Goyal (2008).

Specifically, I fit the fat-tailed distribution of firms’ market values with the Pareto

distribution, which is frequently used in macroeconomic literature (see Gabaix (2011)). It

describes the fat tail parsimoniously with a single parameter, the Pareto coefficient ζ. In

my time-series tests, ζ measures the level of granularity and determines the magnitude of

idiosyncratic risks under-diversified to affect expected returns. When ζ is small (ζ < 2),

the distribution has a fat tail, such that there are large firms with non-negligible market

3Hou and Loh (2016) gives a thorough survey of explanations in published papers for this puzzling negative risk-return relation
and concludes that none of them is sufficiently satisfying.
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weight, and their idiosyncratic shocks generate size-related abnormal returns, or ”alpha”

relative to APT factors. Granularity becomes smaller as ζ increases, and my analytical

framework reverts to the conventional APT factor model when ζ > 2. In this way,

a thin-tail distribution of firm size invokes the law of large numbers and diversifies

idiosyncratic shocks sufficiently to have a negligible impact on expected returns.

Related Literature

The paper relates to the massive amount of APT literature starting from Ross (1976),

which is one of the major topics in asset pricing research (see Chamberlain and Roth-

schild (1983), Chamberlain (1983), Dybvig (1983), Connor and Korajczyk (1986), Connor

and Korajczyk (1993), Huberman (2005)). I take the definition of diversification, factors,

and idiosyncratic risk from Chamberlain and Rothschild (1983), and Chamberlain (1983).

Based on these definitions, I show how granularity breaks the diversification and link it

to the risk premium. Independently, there has been exciting research to better identify

the factors based on the APT framework and improve the associating tests (see Feng,

Giglio, and Xiu (2020), Kelly, Pruitt, and Su (2020), Giglio, Xiu, and Zhang (2021) Giglio

and Xiu (2021),Giglio, Kelly, and Xiu (2022)).

The advantage of applying the APT framework is to set factor and idiosyncratic risk

as two independent components in asset returns. The independence is attractive for the

empirical test since it ensures the exogenous condition in estimating the factor model by

linear regressions. Alternative factor framework may not ensure this advantage for the

empirical test yet give similar risk-return relation to what’s derived in this paper. For

example, Byun and Schmidt (2020) argue that the granularity induces an endogenous

relationship between the value-weighted returns and idiosyncratic shocks of large firms,

potentially biasing the estimates of the CAPM risk exposure (”beta”) of large firms.

Gabaix and Koijen (2020) develop a ”granular instrumental variable” to solve a similar

endogenous bias issue in identifying supply and demand elasticity in a granular market.

My research relates to economic literature that studies the impact of large firms on

4



aggregate fluctuation, e.g., Gabaix (2011), Acemoglu et al. (2012), Acemoglu, Ozdaglar,

and Tahbaz-Salehi (2015). From the macroeconomic perspective, they measure firm size

by fundamental values such as production value and the number of employees. To study

the asset pricing implication, I measure firm size by weight account in the market port-

folio and link it to the classical diversification assumption employed by factor models.

Another inspiring paper that studies the asset pricing implication of a fat-tailed distri-

bution is Kelly and Jiang (2014), which measures the tail distribution of asset returns

instead of firm size.

My analysis also relates to those studies that examine the relationship between asset

prices and idiosyncratic risks, such as Campbell et al. (2001), Xu and Malkiel (2003),

Goyal and Santa-Clara (2003) and Herskovic et al. (2016). Specifically, I reconcile the

idiosyncratic puzzle posited by Ang et al. (2006) and Ang et al. (2009). Hou and Loh

(2016) surveyed the existing explanations in the literature and found none of them is

sufficiently convincing. My analysis contributes to this strand of literature by high-

lighting how any cross-sectional test relating to idiosyncratic risks must account for the

size-related exposure caused by market granularity.

2 A Granular APT

My theoretical framework is a granular APT model, which is a combination of using

APT risk structure4 to define idiosyncratic and factor risks and granularity in the market

portfolio quantified by a Pareto distribution. The Pareto distribution brings tractability

to capture the stylized facts shown in Figure 1 and Table 1: Large firms have non-

negligible weights in the market and hence breaks the diversification of idiosyncratic

risks.

I apply a competitive equilibrium approach (see Dybvig (1983), Grinblatt and Titman

4Since most of the APT material is known, I leave out the cluster of citations here. The primary reference of this subsection is
Connor and Korajczyk (1995), Chamberlain and Rothschild (1983), Chamberlain (1983)
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(1983), Connor and Korajczyk (1995)) to derive how idiosyncratic risks are tied to risk

premium. Specifically, a representative investor holds the market portfolio to maximize

its utility by allocating the weights in the market. Notably, many other APT papers do

not need to specify the preference nor a competitive equilibrium but only need to assume

no-arbitrage and a well-diversified market portfolio since their goal is only to derive a

factor model of expected returns by showing the ”pricing errors” relative to factors is

negligible instead of to show an economic origin of the pricing errors. My framework

explicitly links the risk premium unexplained by factors to un-diversified idiosyncratic

risks, which is a function of an asset’s market weight and level of idiosyncratic risks.

Therefore, it illustrates how the impact of idiosyncratic risks changes as the market

portfolio composition and firm size distribution.

As the benchmark case, I show that a thin-tailed distribution of firm size implies

a well-diversified market portfolio. In consequence, an investor who holds the market

portfolio is only exposed to factor risks that drive the common co-movement among

asset returns, and the impact of idiosyncratic risks is ruled out.

On the other hand, this theoretical framework allows me to study the expected re-

turns in an equilibrium where the distribution of market values is granular, and a rep-

resentative investor chooses to hold an un-diversified market portfolio. To justify this

portfolio allocation, large firms must have high risk premiums tied to their idiosyncratic

risks.

I only present the necessary components here and attach the APT derivations in the

Appendix Section I. There are n assets in the market; each asset return is ri:

ri = E[ri] +
k

∑
s=1

βi,s fs + εi; (1)

E[εi| f ] = 0, ∀i. (2)
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There are k common factors fs, s = 1...k with factor loadings βi,s. The idiosyncratic

shocks εi are independent of factors, treated as the ”residual” or ”firm-specific shock” of

each asset return. A representative investor holds a portfolio described by the weights

{wi}, i = 1...n such that ∑n
i wi = 1 and maximize the expectation of a constant absolute

risk aversion (CARA) utility based on the portfolio return u(∑n
i wiri). Under this classic

APT setup, the expected returns are determined by the shocks of the pricing kernel,

which is approximated by

−γ(
n

∑
i

wi
(

βi,s fs + εi
)
).

γ is the risk aversion coefficient of the CARA utility. The shocks of the pricing kernel

are proportional to shocks of the aggregate portfolio return ∑n
i wiri, which contains the

weighted average of f and ε. An asset’s expected return is determined by its covariance

with the shocks of the pricing kernel. As a result, an asset’s risk premium is a constant

risk-free rate µ0 plus a linear span of factor risk premiums µs, s = 1...k and a granular

term determined by wi and εi:

E[ri] = µ0 +
k

∑
s=1

βi,sµs + γCOV(εi,
n

∑
i

wiεi). (3)

γ is the risk aversion coefficient of the utility. µs is the risk premium tied to factor fs

and βi,s, s = 1...k are the asset’s exposures to each factor. µ0 is a constant equal to the

expected return of a zero factor exposure portfolio.

The granular shocks, ∑n
i wiεi, are equal to the sum of firm-specific shocks and are

weighted by each asset’s relative weight in the market wi. As a part of the pricing

kernel, ∑n
i wiεi drives the expected return of an asset in (3) by its covariance with the id-

iosyncratic components of the asset’s return εi. Additionally, it also explains the market

expected return E[rm] such that E[rm] = E[∑n
i wiri] and equals to:
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E[rm] = µ0 +
n

∑
i

wi

(
k

∑
s=1

βi,sµs

)
+ γVAR(

n

∑
i

wiεi). (4)

Intuitively, if there are no large firms in the market such that all wi are close to zero,

then the impact of idiosyncratic risks is diversified away due to the weak correlation

among εi such that

lim
n→∞

n

∑
i=1

wiεi → 0.

In other words, the impact of idiosyncratic risks converges to zero as the number of

assets n approach infinity. In practice, a finite but large n is a good proxy of the limiting

case and implies a negligible idiosyncratic risk premium in (3) and (4) when idiosyncratic

shocks are diversified away.

APT models illustrate this intuition formally by making the diversification assump-

tion of wi. In Section 2.1, I introduce the diversification assumption in APT and link it

to the firm size distribution. As a theoretical result, I show that a thin-tailed distribution

induces diversification in wi. On the opposite, I quantify the level of granularity by a

Pareto distribution and show it breaks the diversification and makes the idiosyncratic

shocks ∑n
i=1 wiεi priced in terms of risk premium in Section 2.2. I then discuss the asset

pricing implications of my theoretical results to emphasize the importance of granularity

in asset pricing tests in Section 2.3.

2.1 APT, diversification, and thin tail distribution

The APT models make assumptions about the distribution of wi to rule out the idiosyn-

cratic risk’s impact on expected returns as in (3) and (4). Specifically, the APT models

decompose asset returns into factors and idiosyncratic components by the covariance

matrix. Let the covariance matrix of εi be Σε and ρi(Σε), i = 1...n be the eigenvalues

of it, sorted in descending order. The idiosyncratic shocks εi are weakly correlated such
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that the covariance matrix among them has bounded eigenvalues as n→ ∞:

lim
n→∞

ρi(Σε) ≤ C, ∀i.

On the opposite, the common factors fi are the principal components of asset returns

that have a strong correlation with sufficiently many assets such that the eigenvalues of

factor covariance approach infinite as n→ ∞.

Based on this definition, all the APT papers (including but not limited to my main

references Ross (1976), Chamberlain (1983), Chamberlain (1983), Dybvig (1983), Connor

and Korajczyk (1995)) assume the same diversification condition to rule out the impact

of idiosyncratic shocks on expected returns. They assume that the market portfolio

{wi}, i = 1...n is well-diversified, such that

lim
n→∞ ∑ w2

i = 0. (5)

This definition of diversification implies no firm size dispersion as the number of assets

approaches infinity. It is trivial to observe that with the diversification assumption, all

the assets would have negligible weight in a market with sufficiently many assets. I

formalize this argument in the following lemma:

Lemma 1. If the market is well-diversified such that

lim
n→∞ ∑ w2

i = 0.

then all the firms must have their market weight converge to zero as n→ ∞:

lim
n→∞

wi = 0, ∀i.

The negligible market weight of an asset, implied by the diversification assumption,

makes its idiosyncratic risk fail to impact expected returns. Intuitively, with diversifica-
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tion, idiosyncratic shocks have a negligible impact on the pricing kernel due to the weak

correlation. In consequence, the idiosyncratic risk terms COV(εi, ∑n
i wiεi) in expected

returns, as derived in (3), converge to zero as the number of assets approaches infinity.

In contrast, common factors in the asset covariance are not diversified away and explain

the expected return in a linear structure as shown in the following lemma:

Lemma 2. Suppose the market portfolio is well-diversified such that limn→∞ ∑ w2
i = 0 and the

risk structure among asset returns follow an APT model in (1) such that the covariance matrix

among εi has bounded eigenvalues as n→ ∞:

lim
n→∞

ρi(Σε) ≤ C, ∀i.

In that case, the expected returns have a linear factor structure as n→ ∞:

lim
n→∞

E[ri] = µ0 +
k

∑
s=1

βi,sµs,

where µs, s = 1...k is the risk premium tied to each factor and βi,s is the asset i’s exposure to

factors.

In the Appendix Section I, I give a proof of Lemma 2, which describes the classic APT

result: With diversification, the expected return of each asset converges to a linear func-

tion of the pervasive factors among asset returns. This simple and elegant structure is

probably one of the most important results in asset pricing research. Empirical works in

the literature take the finite but sufficiently many assets observed in data as a good proxy

of the theoretical results of n → ∞. The fundamental assumption behind this is that the

diversification measure ∑ w2
i converges to zero at a fast speed so that even with a finite

n, the impact of idiosyncratic risk is negligible. Based on this assumption, researchers

place a massive amount of effort into determining the correct number of factors k as

the number of assets n approaches infinity and, more importantly, on identifying the

pervasive factors fs, s = 1...k and the associating risk premiums µs, s = 1...k.
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I show that the measure of diversification ∑ w2
i relies on firm size distribution. More-

over, a thin-tailed distribution of firm size induces the diversification assumed in (5).

Since the market weight wi is scaled by the total market value to make ∑n
i wi = 1, I work

on the un-scaled firm size Xi distribution instead. I assume firms’ market values Xi are

independent and follow the same distribution. The weight in the market portfolio is

wi = Xi/
n

∑
i=1

Xi.

The diversification measure depends on the mean and variance of Xi such that:

lim
n→∞ ∑ w2

i = lim
n→∞ ∑

(Xi)
2

(∑ Xi)2 = lim
n→∞

1
n

1/n ∑(Xi)
2

(1/n ∑ Xi)2 . (6)

A thin-tailed distribution of X has finite mean and variance, which invokes the Law

of Large numbers (LLN hereafter) to meet the diversification condition assumed by APT

in (5). I formalize this argument in the following lemma:

Lemma 3. The distribution of market value Xi has a thin tail if its first and second moments are

finite as the number of firms approaches infinity. A market portfolio with the thin tail distribution

defined is well-diversified since:

lim
n→∞ ∑ w2

i = lim
n→∞

1
n

E[(Xi)
2]

E[Xi]2
= 0.

Lemma 3 reveals that the converge rate of the diversification measure ∑ w2
i is 1/n. A

thin-tailed firm size distribution implies a well-diversified market portfolio in (5) and

further the linear factor model. With a thin-tailed distribution, no firm-specific shock

matters for the pricing kernel since every asset has negligible weight in the market.

Therefore, only pervasive factors in the covariance drive the risk premium regardless of

the portfolio composition, as concluded in APT models.
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2.2 Pareto distribution and violation of APT

In contrast to the classic case assumed by APT models, when firm size distribution has

a fat tail, the probability of extreme values is non-trivial, and the diversification assump-

tion of APT models does not hold. The large firms that populate the fat tail have a

dominant size. Hence their market weights would not converge to zero when n ap-

proaches infinity. In addition, the presence of these extremely large firms makes the first

and second moments of Xi explode to infinity. Hence the diversification measure ∑ w2
i

does not converge to zero. Conceivably, the violation of APT raises a granularity effect

in the expected returns in the format of COV(εi, ∑n
i wiεi) as derived. These violations,

even in a finite but large n economy, are crucial and cannot be ignored in the empirical

works.

I quantify this granular channel of expected returns by fitting the distribution of

firms’ market value Xi using Pareto distribution and measure the level of granularity by

the Pareto coefficient ζ. The Pareto distribution has a survival function equal to:

P(Xi > x) =
(

x
xm

)−ξ

, x > xm. (7)

A firm’s portfolio weight wi is the market value divided by the total value in the portfolio

Xi/ ∑i Xi as mentioned. The elegance of a Pareto distribution is that it parsimoniously

describes the level of a fat tail by a single parameter ξ > 0. The Pareto coefficient ξ

determines how fast the probability of a firm’s size larger than a threshold xm decreases

as x approaches infinity. Therefore, a high Pareto coefficient ξ implies a low level of

granularity. When ξ > 2, the distribution has a thin tail: The first and second moments

of X are finite such that the diversification in (6) holds. Specifically, the i moments of X

are:
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E[Xi] = ∞, ζ ≤ i;

=
ζxi

m
ζ − i

, ζ > i.
(8)

A small ξ < 2 implies a high probability of firms with extremely large values in the

distribution and means a high level of the fat tail. As a result, the moments of firm size

explode to infinity, and the sample average of Xi and X2
i in (6) does not converge to a

finite value.

Similar to ζ measured by firm fundamentals (Axtell (2001), Gabaix (1999), Gabaix

(2011), Gabaix and Ibragimov (2011)), I found ζ estimated from stock market value is

around 1, , which suggests a significant level of fat tail. In Appendix Section III, I

estimate the value of ζ using the firm size each month and find the estimation of Pareto

distribution also fits the firm size in data well. Therefore, I use the Pareto distribution

to drive violations of the APT models, which induces testable asset pricing implications.

For simplicity, I focus on the fat tail case that ζ < 2.

2.2.1 Pareto distribution and large firms

Given the heuristic argument that large values would dominate the size variation of wi,

large firms in a fat-tailed distribution of size would account for a significant fraction of

the total market value. I illustrate this phenomenon by firstly solving the market weight

of the maximum firm size in a sample of i.i.d Pareto distribution Xmax = max{X1,...,n}.

The maximum market weight wmax equals

wmax = Xmax/
n

∑
i=1

Xi.

In the thin-tailed case, the probability of extreme values converge to zero at a fast speed

as n increases. As a result, Xmax increases with n slowly as the largest value of a ran-
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dom draw from the Pareto distribution with n assets. On the other hand, the numerator

∑n
i=1 Xi converges to nE[X] and drives the market weight wmax to be negligible as n in-

creases. When the fat tail is significant (ζ <2), the Xmax becomes dominant and increases

with n at a fast rate to make wmax significant. I formalize the result in the following

lemma:

Lemma 4. If the firm size Xi follows an i.i.d Pareto distribution defined in (7) and ζ <

2,, then the maximum value Xmax = max{X1,...,n} would have its market weight wmax =

Xmax/ ∑n
i=1 Xi converge to

lim
n→∞

wmax = Xmax/
n

∑
i=1

Xi =



Fζ

Yζ + 1
ξ < 1

lim
n→∞

Fζ

Yζ + log n
ξ = 1

lim
n→∞

Fζ

Yζ + n1−1/ζ E[X]
ξ > 1

(9)

Fζ is a random variable following the Frechet distribution with cumulative density function

e−x−ζ
, x > 0. Yζ is a random variable following a stable distribution with the shape parame-

ter equals ζ.

I show proof for Lemma 4 in the Appendix Section II. I give heuristic explanations

here to highlight the role of the fat tail in generating non-negligible market weights.

With the fat tail, the scale of extreme values increases with n such that its appearance

probability is around 1/n (the largest firm). Specifically, the extremely large values such

that Xi > an, which is defined by

an = inf{x : P(Xi > x) ≤ n−1} = n1/ξ .

The largest firm value Xmax is random depending on the realization, yet it has a scale

around an = n1/ζ . Intuitively, I show that Xmax/an converges to a random variable Fζ

with Frechet distribution (an implication of the Fisher–Tippett–Gnedenko theorem, see
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Gnedenko (1943)), which is also a fat-tail distribution. In other words, the extreme values

increase with n at the rate of n1/ζ and can be presented as n1/ζ times a random variable

Fζ . Similarly, the convergence of ∑ Xi is stated by a ”stable law” (see Durrett (2019),

Theorem 3.8.2.) such that ∑ Xi/an converges to a stable distribution Yζ > 0, which also

have a fat tail with shape parameter ζ.

Combining the convergence of Xmax and ∑ Xi gives the results in Lemma 4. When

1 < ζ < 2, the first moment of X is finite and ∑ Xi converges to n1/ζYζ + nE[X], which

scale as n since n1/ζ < n. Consequently, large firms with a scale of n1/ζ would have their

market weight converge to zero at a rate of n1/ζ−1. When the tail is heavy (ζ < 1), large

values around n1/ζ would dominate the variation of ∑ Xi such that both the Xmax and

∑ Xi increases with n at the same rate. Consequently, the market weight of the largest

firm wmax does not converge to zero but converges to a positive random variable Fζ

Yζ+1 .

The case when ζ = 1 is simply a limiting scenario of ζ > 1 such that the rate of wmax

converging to zero is 1/ log n.

I verify the results in Lemma 4 using simulation of the Pareto distribution to see

how wmax changes with n in Figure 2. In the first subplot, ζ = 0.9 < 1, the wmax does

not converge to zero even when n = 106, yet it fluctuates as a random variable with

non-negligible magnitude depending on the realization of Xmax. When ζ = 1.5, the wmax

also fluctuate as Xmax, but converge to zero at the rate of n1/ζ−1 as fitted by the red dash

line. As another example, I also simulate the thin tail case ζ = 2.5. With thin tail, ∑ Xi

simply converges to nE[X] by LLN, and the maximum value Xmax can also be presented

by n1/ζ Fζ . Consequently, the wmax converges to zero faster, as implied by my theoretical

results, and the magnitude is negligible (around 0.1 percent).

Since ζ is estimated to be around 1, Lemma 4 states a violation of APT that there are

large firms with non-negligible weight in the market portfolio. When ζ < 1, the market

weight of the largest firm converges to a positive random variable independent of n. It

could be several percent as in Figure 1, or even more than 80 percent as in the simulation
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results shown by Figure 2. In a finite economy with n assets, the significant magnitude

of wmax exists even when ζ > 1 since the convergence rate n1/ζ−1 is slow, which is a

weak version of APT violation in a finite economy. For example, let n = 105 and ζ = 1.1.

Under this case, the deterministic term of n in wmax is calibrated to be:

1
n1−1/ζ E[X]

= n1/ζ−1 ζ − 1
ζ

= n1/1.1−1 1.1− 1
1.1

≈ 0.03,

which matches with the magnitude in Figure 1. The convergence rate of diversification

is around n−1/10 instead of 1/n = 1/10000. In addition, the results for wmax hold for the

few largest firms. The k largest firm Xk would have a magnitude such that,

P(Xk > x) ≈ k/n

and scale as n1/ζk−1/ζ = ank−1/ζ . In other words, the second-largest firm would have a

market weight such that

w2 ≈ wmax ∗ 2−1/1.1.

Similarly, the largest ten firms would have their summed market weight approximately

equal wmax ∗ ∑10
k=1 k−1/1.1 ≈ 3.2 ∗ wmax. Using the same example as in Figure 1, the

largest firm has roughly 6 percent of the market weight, and this calibration suggests the

summed weight of the ten largest firms is approximately equal to 20 percent. In other

words, the fat tail distribution, in a finite but large n economy, generates large market

weights of individual assets. This result is consistent with the feature of data and cannot

be ignored in the empirical tests. This granular effect violates the APT assumption

and must make the idiosyncratic risks of these large firms explain the expected return

considerably. As a comparison of the maximum result, I derive the limiting convergence

of Xmin = min{X1,...,n} in Appendix Section II to illustrate how fast small firms in the

Pareto distribution would have their market converge to zero. The minimum weight of
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a small firm wmin converges to zero at a rate faster than 1/n, which indicates that small

firms do not violate the APT assumption.

The violation of APT models does not only appear in the cross-section such that

there are large wi. On aggregate, the fat tail breaks the diversification assumption that

limn→∞ ∑ w2
i = 0 as well. Using the Pareto distribution, I derive the limit of the diversi-

fication measure ∑ w2
i . Similar to the infinite value of the ∑ Xi for the first moment, the

fat tail also breaks the LLN convergence of the ∑ X2
i . As a result, the convergence rate

of w2
i starts to decrease as the level of granularity increases, instead of being 1/n shown

in Lemma 3.

2.2.2 Pareto distribution and failure of diversification

I derive the limit of the diversification measure limn→∞ ∑ w2
i in the following lemma:

Lemma 5. If the firm size Xi follows an i.i.d Pareto distribution defined in (7) and ζ < 2, then

the convergence in equation (6) is determined by ζ as follows.

lim
n→∞ ∑ w2

i =



Yζ/2

(Yζ)2 ζ < 1

lim
n→∞

Yζ/2

(Yζ + log n)2 ζ = 1

lim
n→∞

Yζ/2

(Yζ + n1−1/ζ E[X])2 ζ > 1

(10)

Yζ is a random variable following a stable distribution with the shape parameter equals ζ. Simi-

larly, Yζ/2 follows the stable distribution with shape parameter ζ/2.

The derivation of Lemma 5 is in Appendix Section II. The heuristic explanation of

Lemma 5 is simply an application of the ”stable law .” Recall that,

lim
n→∞ ∑ w2

i = lim
n→∞

1
n

1/n ∑(Xi)
2

(1/n ∑ Xi)2 .

The convergence of ∑ w2
i hence depends on the convergence the sample average of Xi
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and X2
i . The convergence of 1/n ∑ Xi used in the last section is given by the stable

law. The convergence of 1/n ∑ X2
i is solved similarly since X2

i also follows a Pareto

distribution with the tail parameter ζ/2.

I verify the results in Lemma 5 using simulation of the Pareto distribution to see

how ∑ w2
i changes with n in Figure 3. In the first subplot, ζ = 0.9 < 1, the ∑ w2

i does

not converge to zero even when n = 106, yet it fluctuates as a random variable with

non-negligible magnitude depending on the realization of large firms. When ζ = 1.5,

the ∑ w2
i also fluctuates as the appearance of large values but converges to zero at the

rate of n2/ζ−2 as fitted by the red dash line. Intuitively, the convergence rate of ∑ w2
i is

simply the square power of n1/ζ−1, as the convergence rate of wmax. For the thin tail

case, both the first and second moments of Xi are finite, and the LLN holds. Therefore,

in the last subplot (ζ = 2.5), the ∑ w2
i converges to zero at the rate of 1/n as fitted by the

red dashed line. Furthermore, the random realization of large values does not affect the

convergence of ∑ w2
i due to the LLN.

Lemma 5 suggests the constant failure of the diversification assumption in APT mod-

els. When ζ < 1, the diversification measure ∑ w2
i converges to a positive random vari-

able independent of n. As shown in Figure 3, this large variation of ∑ w2
i is driven by

the large values of Xi. In a finite economy with n assets, the significant magnitude of

∑ w2
i exists even when ζ > 1 since the convergence rate n2/ζ−2 is slow, which is a weak

version of APT violation in a finite economy. Using the same example, let n = 105 and

ζ = 1.1. Under this case, 2/ζ − 2 ≈ −0.2 and the convergence rate of diversification

is roughly n−1/5 = 1/10 instead of 1/n = 1/10000. Therefore, the granularity of firm

size must also have a strong impact on the aggregate market fluctuation in a finite n

economy.

In summary, I quantify the level of granularity by a Pareto distribution and show

how a fat-tailed distribution violates the APT assumption. Precisely, the employment of

Pareto distribution quantifies two violations of APT assumption in the market port-
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folio composition. In cross-section, Large firms have non-negligible market weights

limn→∞ wi 6= 0. On aggregate, the firm size variation is non-trivial, which breaks the

diversification of APT such that limn→∞ ∑ w2
i 6= 0. In addition, these two results hold

well in a finite economy with sufficiently many assets, as observed in the data. These

two results give immediate asset pricing implications, making idiosyncratic risk explain

the expected returns in cross-section and aggregate.

2.3 Asset pricing implications of granularity

I now combine the results from the Pareto distribution with the asset pricing equations

in (3) and (4) to produce testable results for expected returns. As discussed in the last

section, my derivations when n → ∞ are also well approximated by the results when

n is sufficiently large enough in data. Therefore, I use the limiting case to discuss the

associating asset pricing tests.

2.3.1 granularity and the idiosyncratic risk puzzle

I use the result in Lemma 4 to establish asset pricing implications in the cross-section.

Idiosyncratic risks of large firms such that limn→∞ wi 6= 0 should not be diversified and

generate risk premiums in the format of COV(εi, ∑n
i wiεi) as derived in (3). To emphasize

the impact of large market weight wi, I further assume that idiosyncratic shocks among

assets are independent, which gives the following result:

Proposition 6. With granularity, there exist large firms s.t. limn→∞ wi 6= 0 as shown in

Lemma 4. If the idiosyncratic shocks are independent of each other with variance θi, then the

expected return for each asset converges to:

lim
n→∞

E[ri] = µ0 +
k

∑
s=1

βi,sµs + θiγ lim
n→∞

wi. (11)

The idiosyncratic variance θi, by definition, is bounded and hence the limitation of wiθi is
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determined by the convergence of wi. Assuming independence among ε in Proposition

6 simplifies the empirical test of my model implication. Identifying the idiosyncratic

shocks εi and testing whether the covariance in COV(εi, ∑n
i wiεi) explains the expected

returns of assets might suffer from omitted factor bias (see Giglio and Xiu (2021)), or the

lack of power due to weakly identified factor models (Giglio, Xiu, and Zhang (2021)).

Instead, measuring the variance of idiosyncratic shocks θi provides convenience and

robustness relative to the selection of factor models. From this perspective, most of the

variance in the asset returns is idiosyncratic. Hence the magnitude of θ measured relative

to various factor models must not change dramatically. Further, the analysis based on

(11) only requires measuring the relative ranking of θi and wiθi in the cross-section,

which avoids the issue of miss-measuring the magnitude of idiosyncratic variance due

to improper factor model selection.

In terms of theoretical insight, Proposition 6 points out that it should be the size-

adjusted idiosyncratic risk wiθi instead of itself θi that explains expected returns. In

the limiting case when n approaches infinity, only large firms limn→∞ wi 6= 0 could

have their idiosyncratic shocks un-diversified to generate expected returns such that

limn→∞ wiθi 6= 0. For a finite n market, the granularity drives big size differences in

the cross-section such that large firms have higher idiosyncratic risk premiums than

small firms. This effect is different from a size factor in Fama and French (1992), which

states that small firms commonly have higher expected returns due to a higher variance

of returns than large firms. In my framework, a ”small minus big” portfolio can be

interpreted as an APT-defined factor since it captures the pervasive pattern in the return

covariance.

Controlling for the factor risk premiums, the product of firm size and idiosyncratic

variance determines the magnitude of abnormal returns relative to APT factor models,

or a ”granular alpha”:
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αi = γwiθi.

Notably, an asset’s market weight determines the marginal impact of idiosyncratic risk

on expected returns. Large firms have a high alpha per unit of idiosyncratic variance

since being” large” must require compensation in terms of pricing and make the ex-

pected returns exhibit more of the idiosyncratic risk premium.

More importantly, Proposition 6 explains the ”idiosyncratic risk puzzle” (IRP here-

after) that there is a very robust negative relationship between idiosyncratic variance

and future returns, investigated in Ang et al. (2006) and Ang et al. (2009). As in their

papers, a typical test of whether idiosyncratic risks matter in the cross-section is to es-

timate a linear regression between αi (expected returns unexplained by factors) and the

idiosyncratic risk θi:

αi = constant + ηθi.

The estimate of η̂ is documented to be negative, which seems puzzling since there should

not be a negative risk-return relation in asset prices.

If the expected returns follow the structure implied by my model, the estimate of η

will capture the correlation between the size-adjusted idiosyncratic risk wiθi and the risk

itself θi instead of the relation between risk and return. In other words, the estimate η̂ in

IRP is proportional to the correlation corr(wiθi, θi), such that

η̂ ∝ corr(wiθi, θi).

Accordingly, it is possible that performing cross-sectional tests for whether idiosyncratic

risk explains the expected returns without adjusting for wi can generate model miss-

specifications. With a thin-tailed distribution of firm size, this miss-specification does

not induce a misleading empirical conclusion since there is no significant size difference
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in the cross-section. For example, if all the assets have the same market weight such that

wi = 1/n, ∀i, then the estimate of η̂ equals:

η̂ =
1
n

γ > 0.

However, when the granularity is significant, large firms that populate the fat tail ac-

count for most of the market valuation, and small firms have negligible market weights.

Consequently, the magnitude of wiθi is mainly driven by the granularity in wi. I plot the

wiθi of individual assets at the end of 2020 in Figure 4. Comparing this plot to Figure 1

shows that the large firms tend to have high wiθi and model-implied alpha relative to

factor models. Moreover, the magnitude of wiθi shown in Figure 4 is empirically reason-

able. Assuming a risk aversion coefficient γ = 5 gives 2.5 percent of α annually for the

largest wiθi firm in Figure 4.

To summarize, my model suggests that large firms (low idiosyncratic risk) have a

significantly higher risk premium tied to their idiosyncratic risks than small firms (high

idiosyncratic risk). As a result, the granularity makes the correlation between wiθi and

θi dominated by the correlation between wi and θi. This correlation corr(wi, θi) is neg-

ative as a feature of data, which is found in the cited papers and my empirical test.

Consequently,

η̂ ∝ corr(wi, θi) < 0.

Therefore, firms with high idiosyncratic risks tend to have negligible market weights and

low risk premiums raised by idiosyncratic risks, which drives the puzzling empirical

results in IRP.
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2.3.2 granularity and the market risk premium

As the extension of the cross-sectional implication, large firms populate the fat tail and

violate the diversification in (5), which makes the level of granularity increase idiosyn-

cratic risks un-diversified on aggregate and hence affect the market risk premium E[rm].

I formalize this intuition in Proposition 7:

Proposition 7. If the idiosyncratic shocks are independent of each other with variance θi, then

the expected return for the aggregate market converges to:

lim
n→∞

E[rm] = µ0 +
n

∑
i

wi

(
k

∑
s=1

βi,sµs

)
+ γ lim

n→∞ ∑ w2
i θi. (12)

The diversification assumption ensures the aggregate impact of idiosyncratic risk ∑ w2
i θi

converges to zero since all the assets should have bounded variance such that θmin ≤

θi ≤ θmax, hence,

θmin lim
n→∞ ∑ w2

i = 0 ≤ lim
n→∞ ∑ w2

i θi ≤ θmax lim
n→∞ ∑ w2

i = 0.

In contrast, granularity fails the diversification and affects the magnitude of the market

expected returns tied to idiosyncratic risks.

I decompose the granular term ∑ w2
i θi into two parts to emphasize the aggregate

impact of granularity, such that:

∑ w2
i θi = ∑ w2

i

(
∑

w2
i

∑ w2
i

θi

)
.

This decomposition reveals that two channels determine the market expected return

tied to idiosyncratic risk: The level of granularity captured in ∑ w2
i is an indicator of

the under-diversification such that if it is negligible, then there is no aggregate impact

of idiosyncratic risk. The
(

∑
w2

i
∑ w2

i
θi

)
is a weighted-average of idiosyncratic risk. My

derivations use the Pareto distribution to highlight the first channel, which derives the
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convergence of ∑ w2
i as a function of ζ. As shown in Lemma 5, a lower Pareto coefficient

ζ (higher granularity) indicates less diversified idiosyncratic risks in the market portfolio

and more risk premium on aggregate. The second channel relates to whether the time-

variation of idiosyncratic risk explains the market expected returns in literature (see

Goyal and Santa-Clara (2003), Bali et al. (2005)). I estimate the Pareto coefficient ζ by

fitting the fat-tail in firm size distribution each month and find that ζ is time-varying

with an average value around 1. This finding suggests a granular channel of market

variation besides the time-varying idiosyncratic risk documented in the literature.

Therefore, Proposition 7 motivates a time-series implication to test whether ζ gen-

erates additional time-variation of market risk premium, controlling the magnitude of

idiosyncratic risk. Taking log of the granular term ∑ w2
i θi, by the decomposition, gives a

linear relation:

log(rm,t+1) = constant + controls + A log ζt. (13)

My model implies A < 0 since ζ decreases the magnitude of the market expected returns

tied to idiosyncratic risks.

3 Empirical Test

3.1 Data

My cross-sectional test is at the monthly frequency from June 1963 to December 2020.

I use monthly return and firm size data in the CRSP and other characteristic data in

COMPUSTAT for control variables. I merged the monthly CRSP data and quarterly

COMPUSTAT characteristics data (replaced with annual data if not available). I use

a standard timing convention of leaving a six-month lag between the quarter end of

characteristics and the monthly returns to ensure the sorted variables are available for
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constructing portfolios. Fama-French factors are from the Kenneth French data library.

As additional controls in the time-series test, I include the predictors from Welch

and Goyal (2008), available from 1945 to 2020. I test whether the Pareto coefficient, as a

measure of the level of granularity, captures the time variation of the market expected

returns in this sample period.

3.2 Cross Section Test

My result in Proposition 6 states that the alpha relative to factor models should depend

on size-adjusted idiosyncratic risk:

αi = γwiθi.

Intuitively, I conduct empirical tests to study the cross-sectional relation between αi, wi,

and θi. Furthermore, since this result explains the IRP (as in Ang et al. (2006) and Ang

et al. (2009)), I construct my tests based on the same measurement of θi and αi. To

start with, I replicate their findings as a benchmark result to document that performing

cross-sectional tests for whether idiosyncratic risk explains the expected returns without

adjusting for wi can generate misleading empirical results. Then I add the size adjust-

ment implied by my model to show that granularity helps identify a positive relation

between idiosyncratic risk and returns.

Notably, I derive a linear relation between αi and wiθi at the firm level. The same

linear relationship may not hold perfectly in a portfolio-level test since If we treat a

portfolio as an asset, its alpha αp is simply a linear combination of each asset’s alpha but

its size-adjusted idiosyncratic risk wpθp does not equal the linear combination of each

asset’s. Therefore,

αp 6= γwpθp.
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From this perspective, I still use the portfolio level test as a benchmark (compared to

Ang et al. (2006)) to illustrate the economic insight of my model and further use the firm

level test (compared to Ang et al. (2009))) to justify my model implication.

3.2.1 Portfolio level tests

Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured by

daily returns in each month using Fama-French 3 factors (FF3 hereafter). Then I split

all the assets into five quintiles to construct five value-weighted portfolios sorted by the

idiosyncratic variance measured in the last month θi,t−1.

I report results using the five idiosyncratic risk sorting portfolios in Table 2. First, I

report the mean and volatility (annualized, in percent) of excess returns in each portfolio,

together with the total market weight of assets in each portfolio as a measure of the

average size in Panel A. I found the same pattern as documented in Ang et al. (2006),

the lowest risk portfolio rL tends to have a significantly higher return than the highest

rH:

E[rL − rH] > 0.

The annualized return spread between the lowest and the highest equals 7.23 percent

with significance. Furthermore, assets in the portfolio with the lowest risk account for

roughly 60 percent of the total market value, which indicates a significant size difference

in the cross-section due to granularity. In addition, as the idiosyncratic risk increases

from the lowest row to the highest, the size of firms in each quintile decreases. As I

explained in the theoretical derivations, this negative relationship between risk and size

is an essential feature of data to reconcile the IRP.

To further test the granularity’s impact on expected returns, I examine the relation

between αi, wi, and θi in the five portfolios. In Panel B, I measure the post-sample alpha

and idiosyncratic volatility relative to FF3 as the benchmark model. The alpha spread
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between the lowest and the highest is 12.6 percent with significance. The negative return

spread observed in Panel A is not explained by factors. From the granularity perspective,

assets with low idiosyncratic risk θi have high market weight wi, which suggests a high

ratio of alpha to idiosyncratic variance since the model implies:

αi

θi
= γwi.

To verify the model implication, I find a decreasing α/θ ratio from the first row to the last.

For robustness, I also present the same test using the CAPM factor in Panel B, using the

three principal components of asset returns (PCA) as factors in Panel C. These results

reveal the same pattern: As θi increases, both the alpha αi and the market weight wi

decrease. In terms of the granular alpha implied by my model, the αi/θi also decreases

due to decreasing wi. This result depends on large firms having non-negligible market

weight and the high marginal impact of idiosyncratic risk on expected returns.

Therefore, the cross-sectional results above suggest that large firms provide more

compensation for the investor to bear each unit of idiosyncratic risk. An immediate

implication of this argument is to take advantage of the high marginal risk-payoff due to

high market weight and construct a long-short trading strategy accordingly. I construct

the ”bet on granularity” portfolio by leveraging a long position of the lowest θ portfolio

with excess return rL − r f (large firms) and short the highest θ portfolio with excess

return rH − r f (small firms). The long-short strategy is constructed as follows:

rL−H,t =
1/θL,t−1

1/θL,t−1 − 1/θH,t−1
(rL,t − r f )−

1/θH,t−1

1/θL,t−1 − 1/θH,t−1
(rH,t − r f ). (14)

This portfolio leverages the large firms (lowest θ) by the inverse of θ to capture the high

marginal impact of their idiosyncratic risk. I update the portfolio per month and estimate

the θH,t−1 and θL,t−1 by the average idiosyncratic variance within each quintile. The

resulting denominator 1/θL,t−1− 1/θH,t−1 is positive and normalizes the portfolio return
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to be dollar-neutral. Given the negative relation between firm size wi and idiosyncratic

variance θi, the ”bet on granularity” portfolio should generate a positive return spread

unexplained by the factor model such that:

αL−H =
wL(large)− wH(small)

1/θL − 1/θH
> 0.

The positive alpha captures the size spread between portfolios with low and high id-

iosyncratic risk such that wL(large size)− wH(small size) > 0.

As a benchmark, the portfolio constructed by θ measured by the past month has an

annualized average return equal to 7.36 percent and volatility equal to 13.60 percent. In

addition, this positive return is not explained by factor models used as controls. The

long-short strategy has a 1.49 percent alpha relative to FF3 factors with significance and

a similar magnitude of alpha relative to CAPM and PCA factors.

The patterns in these five portfolios replicate findings in Ang et al. (2006) and verify

the insight that large firms have high impacts of idiosyncratic risk on expected returns.

A robustness check in the cited paper is to construct sorted portfolios by a longer mea-

surement window of idiosyncratic variance θ, which is a reasonable way to test whether

the IRP is sensitive to the time-varying level of idiosyncratic risks.

To ease the concern in this perspective, I apply the same method to construct the

long-short portfolio using θ measured by the past 3,6 and 12 months and summarize its

performance in Table 3. The patterns showed by the five sorted portfolios are robust to

the longer measurement window of the idiosyncratic variance θ. The long-short portfo-

lios formed by estimation of the past 3,6, and 12 months also generate positive alphas

relative to the benchmark models.

The above results replicate findings in Ang et al. (2006) and test my theoretical insight

by constructing a long-short portfolio. To further explore the cross-sectional relation be-

tween αi, θi, and wi, I extend the 5-portfolio setting to split all the assets by percentiles of

θ to construct 100 value-weighted portfolios. The 100 portfolios are constructed follow-
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ing the same steps and provide a larger cross-section to test my model implications. For

each portfolio i = 1, .., 100, I estimate an FF3 factor model to compute the post-sample

αi, θi (annualized, in percent) and also the summed market weight wi of assets in the

portfolio. I use the 100 portfolios to present the ability of size-adjusted idiosyncratic

variance wiθi to explain alphas and reconcile the idiosyncratic risk puzzle.

I start with estimating a typical test of risk-return relation in IRP:

αi = constant + ηθi.

The estimate of η̂ = −1.78 with a significant T-value. This significantly negative estimate

confirms the IRP that there is a negative relation between θi and αi in the cross-section.

I compare the IRP specification to the granular alpha implied by my model:

αi = constant + γwiθi.

The estimate of γ̂ = 5.17 with a significant T-value. This estimate is consistent with what

the model implies since a positive estimate of γ̂ represents the risk-aversion coefficient.

In addition, to understand whether the size-adjusted risk wiθi has more explanatory

power than θi , I normalize wiθi and θi to make their standard deviation equal one and

estimate a constrained regression,

αi = constant + λwiθi + (1− λ)θi.

The estimate of λ̂ = 3.13 with a significant T-value. To minimize the total estimation

error, the constrained estimation picks a explanatory variable that fits the cross-sectional

variation of expected returns with more precision. The estimate suggests that the gran-

ular channel of the idiosyncratic risk premium has more explanatory power than θ itself

to explain αi.

Furthermore, I use the 100 portfolios to illustrate how the granular impact of id-
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iosyncratic risk explains the IRP. If the expected returns follow the structure implied by

my model, the estimate of η will capture the correlation between the size-adjusted id-

iosyncratic risk wiθi and the risk itself θi instead of the relation between risk and return.

The correlation estimated in the 100 portfolios indicates a negative relation between the

size-adjusted idiosyncratic risk wiθi and the risk itself θi such that

corr(wiθi, θi) = −0.61.

Intuitively, the negative correlation must be driven by the relationship between market

weights wi and idiosyncratic risk θi. The correlation between size and risk, under this

context, equals to:

corr(wi, θi) = −0.56.

As explained in my theoretical derivations, the negative size-risk relation, combined with

granularity, explains the IRP. Without the significant size difference in the cross-section,

the impact of wi would be negligible. In contrast, with granularity, the huge size differ-

ence in wi dominantly drives the correlation between wiθi and θi to negative due to the

negative correlation between wi and θi. With granularity, large firms (low idiosyncratic

risk) have a significantly higher risk premium tied to their idiosyncratic risks than small

firms (high idiosyncratic risk). In other words, firms with high idiosyncratic risks tend

to have negligible market weights and low risk premiums raised by idiosyncratic risks,

which drives the puzzling empirical results in IRP.

To better illustrate this idea, I plot the relationship between size wi and θi of the 100

portfolios in Figure 5. I find this negative relationship can be well approximated by:

log θi ≈ constant + a log wi.

I plot this close to a linear relation between logged θi and wi. This relation is an inter-
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esting pattern in the data, which is worthy of further investigation. Nevertheless, the

granular explanation of IRP relies on the dominance of size effect in wi to make large

firms have high wiθi. In Figure 6, I plot the relationship between wiθi and θi of the 100

portfolios. The dot size in this plot is scaled by the total market weight of each portfolio

wi. The granularity in wi dominantly drives the distribution of wiθi and hence explains

the IRP as explained since only low θi portfolios have non-negligible wi and wiθi. In

contrast, the high θi portfolios have close to zero wi and wiθi.

Similar to the five-portfolio case in Ang et al. (2006), I also examine the robustness

of my 100-portfolio results for different lengths of the measurement window. In Table

4, I summarize the estimate of η, γ, and the constrained estimate λ, together with the

estimated correlations corr(wiθi, θi), corr(wi, θi) using portfolios formed by the idiosyn-

cratic variance measured by the daily returns in the past 1,3,6 and 12 months. All the

estimates using different formation periods are significant and consistent with granular

alpha channels for idiosyncratic risk to explain the expected returns of my model.

3.2.2 Individual asset level test

The portfolio level tests extend the results in Ang et al. (2006) and explain the IRP. I gen-

eralize the portfolio level test to individual asset levels following the same construction

in Ang et al. (2009). I replicate their specification:

ri,t = µ0 +
k

∑
s=1

βi,s,t
(

fs,t + µs
)
+ ηθi,t−1 + εi,t. (15)

To incorporate the time-varying magnitude of risks in asset returns, they test the cross-

sectional relation between expected returns and idiosyncratic risk with time-varying

parameters and apply a Fama-Macbeth regression using monthly data to estimate η̂ <

0.5

5The negative return spread between the highest and the lowest portfolios sorted by θi,t−1 in Ang et al. (2006) implicitly confirms
a negative estimate of η̂ < 0.
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To compare to the test in Ang et al. (2009), I generalize (11) to be time-varying and

estimate:

ri,t = µ0 +
k

∑
s=1

βi,s,t
(

fs,t + µs
)
+ γwi,t−1θi,t + εi,t. (16)

This specification originates from extending the single period competitive equilibrium

derived in my model to multiple periods similar to Merton (1973). I assume a special case

that parameters βi,s,t, ..., θi,t (from conditional covariance among asset returns) change

over time with i.i.d distribution not driven by any state variable, which leads to the

cross-sectional specification in (16). The size-adjusted idiosyncratic risk wi,t−1θi,t, in this

context, approximates the time-varying covariance between idiosyncratic shocks εi,t and

the weighted average ∑n
i=1 wi,t−1εi,t, which is similar to the time-varying factor loading

βi,s,t.

My setup is the same with Ang et al. (2009) in (15) except that they use the past id-

iosyncratic variance θi,t−1 as the explanatory variable to document the IRP. I estimate

η̂ < 0 to replicate the IRP results and compare it to the estimate of γ̂ > 0 in my

model. The comparison between γ̂ and η̂ emphasizes that one should include both

the idiosyncratic risk and marginal impact of idiosyncratic risk determined by wi to test

the risk-return relation in the cross-section. Similarly, to emphasize the importance of

size adjustment, I estimate a constrained model:

ri,t = µ0 +
k

∑
s=1

βi,s,t
(

fs,t + µs
)
+ λwi,t−1θi,t + (1− λ)θi,t−1 + εi,t. (17)

A large λ̂ with significance suggests that the size-adjusted idiosyncratic risk explains the

cross-sectional variation of expected returns with more precision.

As in theirs, I apply the two-step Fama-Macbeth estimation procedure. In the first

step, I run factor regressions (FF3 as in Ang et al. (2009)) to the daily returns of each

asset in each month. This procedure gives estimates of factor exposures βi,s,t and the
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size-adjusted idiosyncratic variance θi,t per month. Then in the second step, I use the

factor exposures and the size-adjusted idiosyncratic risk of each asset wi,t−1θi,t estimated

to explain the cross-sectional variation of expected returns. The second step gives an

estimate of γ̂t in each month, and the estimate of γ̂ the average value of all the estimates

in each sample period, such that:

γ̂ = 1/T
T

∑
t=1

γ̂t

As in typical Fama-Macbeth regressions, I use the simultaneous risk exposure β̂i,s,t and

wi,t−1θ̂i,t estimated from the first step to identify factor risk premium µs and the risk

aversion coefficient γ. I use the lagged weight wi,t−1 to avoid the mechanical correlation

between the holding period return ri,t and the market weight at the end of each month

wi,t. Further, I control the lagged characteristics since they also tend to explain the cross-

sectional variation of expected returns suggested by Daniel and Titman (1997). I control

the lagged book-to-market ratio and the momentum factor computed by the sum of

returns in the last six months as in Jegadeesh and Titman (1993).

In Table 5, I report the cross-sectional regression estimates η̂ (using θi,t−1) and γ̂ (us-

ing wi,t−1θi,t) separately. I also report λ̂ in the constrained model as in (17) using both

wi,t−1θi,t and θi,t−1. In column 1, I estimate a significant negative coefficient η̂ = −2.23,

which is consistent with the Ang et al. (2009) result. Conversely, the main result in

column 4 shows a significantly positive estimate of γ̂ = 9.15, which suggests the im-

portance of using size-adjusted idiosyncratic variance to identify a positive risk-return

relation. For robustness, I also report several other specifications. In the second specifi-

cation reported in column 2, I use both wi,t−1 and θi,t−1 as two variables to explain the

returns. The coefficient for θi,t−1 is still negatively significant with the size controlled,

and the magnitude of the coefficient does not change. In column 3, I use the firm size

wi,t−1 as the only explanatory variable besides the factor exposures and characteristics.

The estimate in column 3 shows an insignificantly positive coefficient for wi,t−1 since it
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does not control the magnitude of idiosyncratic risk θi but only uses the marginal im-

pact of θi as suggested by my model. The specifications in column 2 and 3 does not

identify a positive risk-return relation either, which emphasize the importance of using

the right functional form wi,t−1θi,t since it is a proxy for the covariance with the granular

shocks in the pricing kernel. In column5, I test a specification using both the θi,t−1 and

wi,t−1θi,t. The estimates for this specification show the same significance of η̂ < 0 and

γ̂ > 0, which suggests the robustness of using size-adjusted idiosyncratic variance to

identify a positive risk-return relation. In addition, I estimate the constrained regression

using both the θi,t−1 and wi,t−1θi,t as in (17) to emphasize the granular effect in expected

returns. The estimate of λ̂ is 0.71 with significance. Also, this constrained model, in the

time-varying setup, helps to identify a positive relationship between θi,t−1 and ri,t. This

finding concretely highlights the importance of using size adjustment to test whether

idiosyncratic risks explain risk premiums, as implied by my model.

3.2.3 Robustness check for the cross-section tests

The first robustness check is to reconcile my results with the double-sorting tests in the

literature, which separate firms into several groups by size and then construct portfolios

sorted by idiosyncratic risks using firms within each group. Similarly, I separate firms

into three groups by size (the largest 30 percent, the smallest 30 percent, and the left 40

percent in the middle) and apply the firm-level tests as in (15), (16) and (17) to examine

how the size-adjusted idiosyncratic risk explains expected returns within each group of

firms.

I summarize the results in Table 6. The η estimates in (15) from each group are

all significantly negative, which is consistent with the results in the literature that the

double-sorting does not resolve the IRP. This finding is not a surprise under the granular

explanation of IRP since the significant size difference due to granularity exists in all

groups of firms separated by size. In other words, even in the group of firms with the
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smallest market value, the relative relation implied by my model still holds such that

firms with higher market weights have more idiosyncratic risk premiums.

Consequently, the γ estimates using wiθi in (16) are all significantly positive in the

three groups, which further verifies the model’s cross-sectional implication. In addition,

the constrained estimates of λ in (17) are all significantly positive. Meanwhile, the mag-

nitudes of γ̂ in the three groups are quite different since the wiθi of firms in the smallest

group is way smaller than firms in the largest group. This difference in cross-section

verifies the argument of my paper: Large firms have market weights significantly higher

than small firms and hence have high idiosyncratic risk premiums captured by γwiθi.

The second robustness check is to use other factor models to measure the idiosyn-

cratic variance θ to examine whether my empirical tests are sensitive to the factor model

selection. As discussed in my theoretical derivations, measuring the variance of idiosyn-

cratic shocks θi should be robust to factor model selection since various models give the

same cross-sectional ranking of θi among firms. From this perspective, my tests avoid

issues in the identification of idiosyncratic shocks from improper factor model selec-

tion (see Feng, Giglio, and Xiu (2020), Giglio, Xiu, and Zhang (2021) Giglio and Xiu

(2021),Giglio, Kelly, and Xiu (2022)).

Therefore, I extend my benchmark results using FF3 factors with the same firm-level

tests but using FF5 factors, PCA factors (the three principal components of all asset

returns), and the Q5 factors (see Hou, Xue, and Zhang (2015), Hou et al. (2021)) and

summarize the results in Table 7. The portfolio-level results using other factor models

show the same pattern and are available upon request. Notably, the estimates of η are

still negative but less significant using the FF5 and Q5 factor models, which is consistent

with the findings in the literature. However, the size-adjusted idiosyncratic risk always

positively explains the expected returns with significance and a similar magnitude of γ̂

and λ̂ to the benchmark results.

In summary, my empirical results are robust to factor model selection and tests us-
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ing firms grouped by size. The driving force of these results is the significant size

difference in the cross-section, which makes large firms have higher idiosyncratic risk

premiums than small firms, as captured by γwiθi. In practice, the size difference among

firms changes over time. Especially, there were lots of small firms in the market from

the decade 70s-90s as shown in Table 1, which could reduce the overall cross-sectional

variance of wi and hence weaken the IRP results and the explanatory power of wiθi on

expected returns.

Therefore, the last robustness check is to examine whether the granular explanation

of IRP changes over sub-sample periods. I separate the whole sample by decades to run

the same tests and summarize the results in Table 8. The total number of firms jumped

from 2995 in the 1960s to 6718 in the 1970s due to the emergence of the NASDAQ ex-

change, which kept increasing in the 80s and 90s. Most of these firms were emerging

technology companies and hence reduced the overall size difference among firms. Con-

sequently, the IRP estimates of η are not significantly negative in the 70s-90s. This result

is consistent with my theoretical derivation since if all firms have the same size, then IRP

would not exist since

η̂ =
1
n

γ > 0.

On the opposite, the size-adjusted idiosyncratic risk wiθi positively explains the risk

premium with significance except in the 90s due to a notably high number of small firms

during the ”Internet bubble” period. The constrained estimate of λ is always positive

and significant, which suggests that large firms constantly exist in the market and have

high idiosyncratic risk premiums. The sub-sample results for the 100 portfolios show

the same pattern and is available upon request.
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3.3 Time-Series Test

The main results of this paper hinge on the Pareto coefficient ζ value, which quantifies

the level of granularity and the associating asset pricing implication. I estimate the

tail parameter ζ of the Pareto distribution using the Hill estimator (see Hill (1975)). I

introduce the details to estimate a monthly time-series of ζt in Appendix Section III

and present the result of ζt explaining the time-variation of market risk premium in the

following section.

3.3.1 Time-series results

In this section, I test whether the Pareto coefficient predicts market return at a monthly

frequency:

log(rm,t+1) = constant + controls + A log ζt.

The hypothesized predictive coefficient A should be significantly negative since a low

ζt indicates a high level of granularity and high risk premium in the market returns.

I normalize all the predictors to zero-mean and unit variance. Further, I adjust het-

eroskedasticity and serial correlation in residuals in all of our predictive regressions

using the Newey-West standard error.

I summarize the main results in Table 9. In Panel A, I present the single variable

regression that the granular predictor log ζt predicts the logged excess market return

rm,t+k at various horizons and different sub-samples. I use this single variable regression

as a benchmark result and control other predictors later for comparison. In the first panel

of Table 9, I report the results using the whole sample at various horizons k = 1, 12, 60:

The one-period ahead predictive coefficient is -0.28 with a significant t-stat value of -2.11.

I also report the coefficient to correct the Stambaugh bias due to high serial correlation

in log ζt (see Stambaugh (1999)). The prediction significance remains in the long horizon
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for k = 12, 60.

Meanwhile, my empirical test above is motivated by the granular channel of mar-

ket variation that ζ reflects how much of the idiosyncratic risks are un-diversified. This

channel relates to whether the time-variation of idiosyncratic risk explains the market

expected returns in literature (see Goyal and Santa-Clara (2003), Bali et al. (2005)). There-

fore, I further test whether ζ generates additional time-variation of market risk premium,

controlling the magnitude of idiosyncratic risk. I measure the level of idiosyncratic risk

at the aggregate level by the weighted average of θ. Specifically, I use FF3 factors, or the

three principal components of daily returns, to measure each asset’s idiosyncratic vari-

ance θi,t in each month and compute the sum of all weighted by market weight wi,t−1. I

also consider a measure of idiosyncratic risk relative to the CAPM model introduced in

Campbell et al. (2001). I plot these three idiosyncratic risk measures in Figure 7 and find

a very similar magnitude of idiosyncratic risk changing over time. In Panel B, C, and D

of Table 9, I report the results controlling the idiosyncratic risk under the three measures

above, respectively. The magnitude of the coefficient almost does not change, controlling

for the idiosyncratic risk, yet the significance of predictability is generally weaker.

In Figure 8, I plot the time-series estimator log ζt together with the weighted average

of idiosyncratic variance θi,t relative to the Fama-French 3 factor models. The Pareto

coefficient tends to reach the bottom value at the shaded area, marking the NBER re-

cession. The tail predictor has a weakly negative correlation (-0.17) with the level of

idiosyncratic risk since the aggregate risk is counter-cyclical and increases with the mar-

ket risk premium. The evidence shown in this plot consists of the intuition that a low

Pareto coefficient implies a high risk premium and hence high future market returns.

3.3.2 Control for alternative predictors

I use predictors listed in Welch and Goyal (2008) as controls for other systematic risks to

identify the granular channel of risk premium better. In Table 10, I provide a summary of
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predictors, including their definitions, AR1 coefficients, and their correlation coefficients

with the main predictor log ζt. The correlations between published predictors and the

granular predictor are weak: Besides the default spread, which has a 0.27 correlation, all

the other predictors have absolute correlations with ζ close to or less than 0.1. The weak

correlation suggests that existing predictors in literature do not capture the granular

effect.

In Table 11, I report results controlling for other predictors investigated in Welch and

Goyal (2008). I add each predictor to the single variable regression and present bi-variate

regression results. The granular predictor log ζt negatively predicts the market returns

with all the predictors controlled at all horizons. The bi-variate results highlight the

stability of coefficients on log ζt at all horizons: At monthly frequency, the coefficient is

between -0.34 and -0.25. The 12-month-ahead coefficient is between -2.69 and -1.65, and

the 60-month-ahead is between -11.21 and -8.27. The stability of coefficients suggests that

the granular part of the market expected return is independent of other resources in the

literature, which is consistent with the weak correlation between the Pareto coefficient

and controlling variables. The significance remains in the long horizon at k = 12, 60,

especially for the 60-month ahead.

In summary, I show that the Pareto coefficient negatively explains the time-variation

of the market capital value. The results confirm the economic intuition that a low ζ

indicates a high risk premium due to the failure of diversification and high future market

returns. Further, the results verify the time-series implication of my model: The level

of granularity increases the un-diversified idiosyncratic risks in the market and explains

the time-variation of the market’s expected returns.

For robustness, I also compute the out-of-sample R2 by comparing the predictive

error of log ζ to the historical mean computed by a rolling window. I summarize the

out-of-sample results in the Appendix Section IV.
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4 Conclusion

I contribute to the existing asset pricing research by documenting a granular channel

of idiosyncratic risk to explain expected returns. I theoretically show that the fat-tailed

distribution of firm size breaks the market diversification assumed by APT, making id-

iosyncratic risk matters for asset prices.

Moreover, my results highlight a novel asset pricing pattern: Low risk level firms

do not always have to generate low risk premiums. With granularity, large firms have

higher idiosyncratic risk premium than small firms, in spite of having a lower level of

idiosyncratic risks. This result is supported when running multiple sets of robustness

checks as well. Furthermore, this finding of mine explains the influential ”idiosyncratic

risk premium puzzle” in Ang et al. (2006) and Ang et al. (2009). For implication at

the aggregate level, I use a Pareto distribution to measure the level of granularity and

show that the Pareto coefficient explains the market variation while controlling for time-

varying idiosyncratic risk and alternative predictors in literature.

My theoretical model is based on a static APT model and treats the degree of mar-

ket granularity as a feature of data to explore potential deviations from factor models.

It would be interesting to combine the asset pricing study in this paper with dynamic

growth models that endogenously generate a fat-tailed distribution of firm size (see

Champernowne (1953), Wold and Whittle (1957), Gabaix (1999), Beare and Toda (2022))).

Further, a dynamic framework may include the existing features in the asset pricing

study: An asset pricing model that includes the factor risk structure as in APT, or

an equilibrium mechanism to generate factor structures in expected returns, with the

negative relation between firm size and volatility incorporated, must produce fruitful

understandings of the dynamic interaction between granularity and asset returns.
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5 Tables and Figures

Figure 1: Firm Market Weight Sorted at the end of 2020. This figure displays the fat
right tail of firm size. I measure the firm size by each asset’s relative weight in the market
portfolio. The 10 largest firms are highlighted and accounts for over 25 percents of the
whole CRSP data in 2020 contains about 4,000 firms.
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Figure 2: Simulation of the largest firm’s market weight. In this figure, I use simulation
of Pareto distribution with ζ = 0.9, 1.5 and 2.5 to study how the market weight of the
largest firm wmax = Xmax

∑ Xi
changes as n increases.

(a) ζ = 0.9

(b) ζ = 1.5

(c) ζ = 2.5
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Figure 3: Simulation of the ∑n
i w2

i as n increases . In this figure, I use simulation of
Pareto distribution with ζ = 0.9, 1.5 and 2.5 to study how the diversification measure
∑n

i w2
i changes as n increases.

(a) ζ = 0.9

(b) ζ = 1.5

(c) ζ = 2.5
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Figure 4: Size-adjusted idiosyncratic risk of individual assets. In this figure, I plot the
wiθi of individual assets sorted by market weight at the end of 2020. The dot size is
scaled by the total market weight of each portfolio wi.
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Figure 5: Size and idiosyncratic risk of the 100 sorted portfolios in log scale. In this
figure, I plot the relation between θi and wi of the 100 portfolios sorted by θi in log scale.
The dot size is scaled by the total market weight of each portfolio wi.
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Figure 6: Size-adjusted idiosyncratic risk of the 100 sorted portfolios. In this figure, I
plot the relation between wiθi and θi of the 100 portfolios sorted by θi. The dot size is
scaled by the total market weight of each portfolio wi.
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Figure 7: Three measures of idiosyncratic risk . I measure the level of idiosyncratic
risk at the aggregate level by the weighted average of θ. Specifically, I use FF3 factors,
or the three principal components of daily returns, to measure each asset’s idiosyncratic
variance θi,t in each month and compute the sum of all weighted by market weight wi,t−1.
I also consider a measure of idiosyncratic risk relative to the CAPM model introduced
in Campbell et al. (2001). The shaded areas are NBER recessions.
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Figure 8: Pareto predictor v.s. idiosyncratic risk. I measure the level of idiosyncratic
risk at the aggregate level by the weighted average of idiosyncratic risk relative to Fama-
French 3 factors. I plot this series together with the Pareto predictor. The blue line is the
Pareto predictor and the yellow line is the weighted average of idiosyncratic variance.
The shaded areas are NBER recessions.
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Table 1: Evidence of granularity over decades
This table presents the names of the ten largest firms and their market weight in each decade.

Panel A: Summary of the 10 largest firms, 1940s-1970s
1940 1950 1960 1970

1 GENERAL MOTORS (0.05) STANDARD OIL NJ(0.05) IBM (0.05) IBM (0.05)

2 STANDARD OIL NJ(0.04) GENERAL MOTORS (0.05) GENERAL MOTORS (0.04) STANDARD OIL NJ(0.03)

3 DUPONT (0.04) DUPONT (0.04) STANDARD OIL NJ(0.04) GENERAL MOTORS (0.02)

4 GENERAL ELECTRIC (0.03) GENERAL ELECTRIC(0.03) TEXACO INC(0.02) EASTMAN KODAK(0.02)

5 TEXASCO(0.02) TEXASCO(0.02) GENERAL ELECTRIC(0.02) GENERAL ELECTRIC(0.02)

6 STANDARD OIL IND(0.01) STANDARD OIL CAL(0.02) DUPONT (0.02) TEXACO(0.01)

7 STANDARD OIL CAL(0.01) GULF OIL (0.02) EASTMAN KODAK(0.01) PROCTER & GAMBLE(0.01)

8 COCA COLA(0.01) IBM (0.01) GULF OIL (0.01) MINNESOTA MINING & MFG(0.01)

9 GULF OIL (0.01) SOCONY VACUUM OIL(0.01) STANDARD OIL CAL(0.01) DUPONT (0.01)

10 KENNECOTT COPPER (0.01) STANDARD OIL IND(0.01) MINNESOTA MINING & MFG(0.01) STANDARD OIL CO IND(0.01)

Total weight 0.24 0.26 0.24 0.19
Number of assets 1019 1215 2995 6718

Panel B:Summary of the 10 largest firms, 1980s-2010s
1980 1990 2000 2010

1 IBM(0.04) GE(0.02) XOM(0.03) AAPL(0.03)
2 XON(0.02) XON(0.02) GE(0.03) GOOG(0.02)
3 GE(0.02) KO(0.02) MSFT(0.02) MSFT(0.02)
4 SUO(0.01) WMT(0.01) WMT(0.02) XOM(0.02)
5 SN(0.01) IBM(0.01) C(0.02) BRK(0.02)
6 GM(0.01) MSFT(0.01) PFE(0.02) BRK(0.02)
7 MOB(0.01) MRK(0.01) JNJ(0.01) AMZN(0.01)
8 SD(0.01) PG(0.01) INTC(0.01) JNJ(0.01)
9 BLS(0.01) BMY(0.01) CSCO(0.01) WMT(0.01)
10 DD(0.01) JNJ(0.01) IBM(0.01) JPM(0.01)
Summed weight 0.15 0.14 0.17 0.18
Number of assets 10428 12477 9040 6060
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Table 2: Portfolios sorted by idiosyncratic variance estimated by Fama-French 3 factors
per month.
Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured per
month using FF3 factors. Then I split all the assets into five quintiles to construct
five value-weighted portfolio sorted by the idiosyncratic variance measured in the
last month θi,t−1. I report the mean (annualized, in percent), volatility (annualized,
in percent) and market weight of each portfolio in Panel A. I also examine the alpha
and idiosyncratic volatility (both annualized, in percent) of these portfolios relative
to several benchmark models. I report results using Fama-French 3 factors in Panel
B as the benchmark case, CAPM in Panel C and a factor model including the three
principal components of all the available asset returns in Panel D.

Panel A: Summary of portfolios sorted by idiosyncratic variance
L 2 3 4 H L-H

Mean 7.17 7.42 8.38 4.75 -0.06 7.23

Volatility 13.73 17.35 21.35 26.05 30.12 23.65

wi 0.60 0.23 0.11 0.05 0.02

Panel B: alpha relative to FF3
αFF3 1.18 -0.20 -0.44 -5.29 -11.42 12.60

T-stat 2.91 -0.38 -0.53 -3.88 -6.54 6.34√
θFF3 2.82 3.97 5.80 8.96 13.85

αFF3/θFF3 14.85 -1.29 -1.31 -6.60 -5.95

Panel C: alpha relative to CAPM
αCAPM 1.34 -0.02 -0.50 -5.39 -10.59 11.92

T-stat 2.52 -0.04 -0.48 -2.98 -4.35 4.20√
θCAPM 3.67 4.00 7.16 12.29 18.38

αCAPM/θCAPM 9.94 -0.14 -0.97 -3.57 -3.13

Panel D: alpha relative to PCA factors
αPC 5.90 5.29 5.06 0.11 -5.88 11.79

T-stat 3.45 2.66 2.33 0.04 -2.16 5.29√
θPC 12.83 15.28 17.24 19.31 20.11

αPC/θPC 3.59 2.27 1.70 0.03 -1.45
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Table 3: Performance of ”bet on granularity portfolios” under different formation pe-
riods.
Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured by the
past 1,3,6 and 12 months using the Fama French three factors. I split all the assets into
five quintiles to construct five value-weighted portfolio sorted by the idiosyncratic
variance measured in the last month θi,t−1. I construct the ”bet on granularity” port-
folio by leveraging a long position of the lowest θ portfolio rL and short the highest θ
portfolio rH. The long-short strategy is constructed as follows:

rL−H,t =
1/θL,t−1

1/θL,t−1 − 1/θH,t−1
(rL,t − r f )−

1/θH,t−1

1/θL,t−1 − 1/θH,t−1
(rH,t − r f )

I examine the alpha and idiosyncratic volatility (both annualized, in percent) of these
portfolios relative to several benchmark models. I report results using CAPM, Fama-
French 3 factors and a factor model including the three principal components of port-
folios sorted by various characteristics.

Bet on granularity portfolios
window length 1 3 6 12

rL−H rL−H rL−H rL−H

Mean 7.36 7.29 7.25 7.03

Volatility 13.60 13.67 13.66 13.74

αFF3 1.49 1.48 1.57 1.46

T-stat 3.67 3.62 3.79 3.54

αCAPM 1.64 1.60 1.62 1.47

T-stat 3.04 2.79 2.76 2.45

αPC 6.20 6.25 6.27 6.04

T-stat 3.65 3.62 3.62 3.45
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Table 4: Cross-sectional results using 100 portfolios sorted by idiosyncratic variance,
robustness check for measurement window of idiosyncratic risk
Like Ang et al. (2006), I sort all the assets by their idiosyncratic risk θ measured per
month using FF3 factors/three principal components of daily returns. I examine the
robustness of my 100-portfolio results for different measurement window length. I
report estimate of

αi = constant + ηθi;

αi = constant + γwiθi.

In addition, I normalize wiθi and θi to make their standard deviation equals 1 and
estimate a constrained regression

αi = constant + λwiθi + (1− λ)θi.

I summary the estimate of η, γ and the estimated correlations corr(wiθi, θi), corr(wi, θi)
using portfolios formed by the idiosyncratic variance measured by the daily returns
in the past 1,3,6 and 12 months.

Cross-sectional results using 100 portfolios
estimates \ window length 1 3 6 12

η -1.78 -1.76 -1.64 -1.28

T-stat -15.90 -15.63 -18.32 -18.09

γ 5.17 4.67 3.90 3.16

T-stat 8.72 7.78 7.88 7.60

λ 3.13 3.42 3.37 2.87

T-stat 17.21 15.85 17.66 17.47

corr(wiθi, θi) -0.61 -0.58 -0.54 -0.52

corr(wi, θi) -0.56 -0.51 -0.47 -0.44
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Table 5: Fama-MacBeth results, individual asset level
In this table, I report the individual asset level test of granular risk premium by run-
ning ri,t on the size-adjusted idiosyncratic variance wi,t−1θi,t. The goal is to compare
my estimate to estimate in Ang et al. (2009), ri,t = constant + controls + ∑k

s=1 β̂i,s,tµs +

ηθ̂i,t−1 + εi,t, to my model: ri,t = constant + controls + ∑k
s=1 β̂i,s,tµs + γwi,t−1θ̂i,t + εi,t. I

estimate η̂ in the columns 2 to replicate the results in Ang et al. (2009) and compare
it to the estimate of γ̂ from my model in the column 4. To emphasize the importance
of size-adjustment, I estimate a constrained model ri,t = µ0 + ∑k

s=1 βi,s,t
(

fs,t + µs
)
+

λwi,t−1θi,t + (1− λ)θi,t−1 + εi,t in the column 6. I estimate the idiosyncratic variance θ̂i,t
by running daily returns on the FF3 factors per month. The controlling variables are
the FF3 factor loadings and the lagged characteristics suggested by Daniel and Titman
(1997). As in their paper, I control the lagged book-to-market ratio b/mi,t−1 and the
momentum factor momi,t−1 computed by the sum of returns in the last six months as
in Jegadeesh and Titman (1993).

Cross-sectional Regression, Stock Level
ri,t ri,t ri,t ri,t ri,t ri,t

const 0.56 0.57 0.58 0.49 0.49 0.38

3.00 2.98 2.98 2.58 2.60 1.96

β̂
Mkt−RF
i,t 0.00 0.00 -0.00 -0.01 -0.00 -0.03

0.05 0.05 -0.08 -0.19 -0.05 -0.53

β̂
SMB
i,t 0.04 0.04 0.04 0.04 0.04 0.04

1.65 1.70 1.66 1.54 1.59 1.53

β̂
HML
i,t -0.01 -0.01 -0.00 0.00 -0.00 0.00

-0.19 -0.20 -0.02 0.10 -0.08 0.12

b/mi,t−1 0.24 0.24 0.24 0.25 0.25 0.25

8.65 8.60 8.57 8.84 8.90 8.78

momi,t−1 -0.45 -0.46 -0.45 -0.48 -0.49 -0.36

-2.09 -2.15 -2.01 -2.14 -2.30 -1.66

θ̂i,t−1 -2.23 -2.23 (η) -2.24 0.29 (1-λ)
-1.98 -2.04 -2.09 7.79

wi,t−1 -0.08 -0.11 -1.86 -1.73 -3.18

-0.47 -0.59 -5.05 -4.80 -13.17

wi,t−1θ̂i,t 9.15 (γ) 8.77 0.71 (λ)
8.99 8.73 19.34
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Table 6: Fama-MacBeth results, individual asset level, with three size groups.
In this table, I report the same individual asset level test within three groups of firms
sorted by size. I report the results of the same tests in Table 5. I estimate the idiosyn-
cratic variance θ̂i,t by running daily returns on the FF3 factors per month. The con-
trolling variables are the FF3 factor loadings and the lagged characteristics suggested
by Daniel and Titman (1997). As in their paper, I control the lagged book-to-market
ratio b/mi,t−1 and the momentum factor momi,t−1 computed by the sum of returns in
the last six months as in Jegadeesh and Titman (1993).

Panel A: Cross-sectional regression, large-cap firms
ri,t ri,t ri,t ri,t ri,t ri,t

controls controls controls controls controls controls
θ̂i,t−1 -16.47 -17.35 (η) -18.30 0.26 (1-λ)

-4.40 -4.56 -4.53 9.51

wi,t−1 -0.23 -0.14 -0.09 -0.25 -2.03

-2.49 -1.39 -0.44 -1.28 -15.91

wi,t−1θ̂i,t 1.52 (γ) 1.75 0.74 (λ)
2.34 2.74 27.01

Panel B: Cross-sectional regression, middle-cap firms
ri,t ri,t ri,t ri,t ri,t ri,t

controls controls controls controls controls controls
θ̂i,t−1 -10.89 -11.24 (η) -21.49 -0.39 (1-λ)

-5.52 -5.80 -9.46 -6.91

wi,t−1 -8.86 30.05 -37.24 -101.43 -107.23

-0.38 1.24 -1.09 -3.01 -3.59

wi,t−1θ̂i,t 56.81 (γ) 69.73 1.39 (λ)
7.38 9.01 24.48

Panel C: Cross-sectional regression, small-cap firms
ri,t ri,t ri,t ri,t ri,t ri,t

controls controls controls controls controls controls
θ̂i,t−1 -2.63 -3.10 (η) -10.29 -1.36 (1-λ)

-2.51 -3.24 -7.22 -12.65

wi,t−1 -3062.46 -3076.17 -4643.75 -4913.00 -5131.17

-9.18 -8.67 -11.11 -11.93 -11.80

wi,t−1θ̂i,t 595.42 (γ) 619.36 2.36 (λ)
15.79 16.21 21.97
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Table 7: Fama-MacBeth results, individual asset level, using other factor models.
In this table, I report the same individual asset level test using FF5 factors, PCA factors
(the three principal components of all asset returns) and the Q5 factors (see Hou, Xue,
and Zhang (2015), Hou et al. (2021)). I report the results of the same tests in Table 5. I
estimate the idiosyncratic variance θ̂i,t by running daily returns on the selected factors
per month. The controlling variables are the estimated factor loadings and the lagged
characteristics suggested by Daniel and Titman (1997). As in their paper, I control the
lagged book-to-market ratio b/mi,t−1 and the momentum factor momi,t−1 computed
by the sum of returns in the last six months as in Jegadeesh and Titman (1993).

Panel A: Cross-sectional regression, controlling for FF5 factors
ri,t ri,t ri,t ri,t ri,t ri,t

controls controls controls controls controls controls
θ̂i,t−1 -1.68 -1.70 (η) -1.74 0.30 (1-λ)

-1.76 -1.83 -1.85 8.88

wi,t−1 -0.17 -0.19 -1.55 -1.48 -3.09

-0.98 -1.05 -4.50 -4.35 -14.44

wi,t−1θ̂i,t 8.35 (γ) 8.16 0.70 (λ)
8.22 7.95 20.87

Panel B: Cross-sectional regression, controlling for PCA factors
ri,t ri,t ri,t ri,t ri,t ri,t

controls controls controls controls controls controls
θ̂i,t−1 -2.22 -2.23 (η) -2.25 0.28 (1-λ)

-2.01 -2.08 -2.13 7.97

wi,t−1 -0.14 -0.15 -2.00 -1.93 -4.04

-0.79 -0.81 -4.73 -4.66 -16.55

wi,t−1θ̂i,t 6.73 (γ) 6.52 0.72 (λ)
7.97 7.77 20.99

Panel C: Cross-sectional regression, controlling for Q5 factors
ri,t ri,t ri,t ri,t ri,t ri,t

controls controls controls controls controls controls
θ̂i,t−1 -1.17 -1.19 (η) -1.19 0.30 (1-λ)

-1.40 -1.47 -1.46 8.91

wi,t−1 -0.19 -0.22 -1.66 -1.57 -3.26

-1.00 -1.12 -4.57 -4.42 -14.79

wi,t−1θ̂i,t 8.30 (γ) 8.10 0.70 (λ)
8.47 8.27 20.56
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Table 8: Fama-MacBeth results, individual asset level, sub-sample results separated
by decades.
In this table, I report the same individual asset level test in sub-samples separated by
decades. I report the results of the same tests in Table 5. I estimate the idiosyncratic
variance θ̂i,t by running daily returns on the FF3 factors per month. The control-
ling variables are the FF3 factor loadings and the lagged characteristics suggested by
Daniel and Titman (1997). As in their paper, I control the lagged book-to-market ratio
b/mi,t−1 and the momentum factor momi,t−1 computed by the sum of returns in the
last six months as in Jegadeesh and Titman (1993).

Cross-sectional regression per decade, Firm level
1960 1970 1980 1990 2000 2010

η -13.50 -0.10 0.25 1.01 -2.35 -1.61

-1.77 -0.04 0.43 1.66 -3.29 -2.02

γ 10.81 11.64 11.45 -1.53 7.80 15.17

3.44 4.92 5.42 -0.71 3.07 5.96

λ 0.93 0.61 0.69 0.25 0.80 1.05

9.37 6.78 8.53 2.24 12.00 15.59

Number of firms 2995 6718 10428 12477 9040 6060
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Table 9: Time-series results
In this table, I reports the monthly times-series results for the Pareto coefficient ζ
to predict log excess-return for the aggregate market. A lower ξ implies a fatter
tail, the hypothesize predictive relation should be negative A < 0. In Panel A,
I check the prediction results at multiple-horizons at various horizon k = 1, 12, 60,
log(rm,t+k) = constant + A log ξt. Furthermore, I control for the level of idiosyncratic
risk in log(rm,t+k) = constant + A log ξt + ∑ wi,t−1θi,t. I measure the level of idiosyn-
cratic risk at the aggregate level by the weighted average of θ. Specifically, I use FF3
factors, or the three principal components of daily returns, to measure each asset’s
idiosyncratic variance θi,t in each month and compute the sum of all weighted by
market weight wi,t−1. I also consider a measure of idiosyncratic risk relative to the
CAPM model introduced in Campbell et al. (2001). The results controlling for these
three measures are in Panel B, C and D, respectively.

Panel A: Single variable prediction, multiple-horizon results
log rm,t→t+1 log rm,t→t+12 log rm,t→t+60

log ζt -0.28 -2.03 -10.81
T-stat -2.11 -1.70 -3.42
R2(%) 0.43 1.67 9.61

log ζt (de Stambaugh-bias) -0.27 -2.04 -10.78

T-stat -1.87 -3.61 -8.77

Panel B: control ∑ wiθi(FF3)
log rm,t→t+1 log rm,t→t+12 log rm,t→t+60

log ζt -0.27 -1.70 -6.17
T-stat -1.91 -1.31 -1.91

∑ wiθi(FF3) -0.20 -1.69 0.80

T-stat -0.99 -0.91 0.18

R2(%) 0.48 1.79 3.34

Panel C: control ∑ wiθi(PCA)
log rm,t→t+1 log rm,t→t+12 log rm,t→t+60

log ζt -0.26 -1.64 -5.83
T-stat -1.81 -1.23 -1.78

∑ wiθi(PCA) -0.10 -1.11 1.53

T-stat -0.47 -0.56 0.33

R2(%) 0.33 1.12 3.47

Panel D: control ∑ wiθi(Campbell et al)
log rm,t→t+1 log rm,t→t+12 log rm,t→t+60

log ζt -0.28 -1.78 -6.52
T-stat -1.94 -1.38 -2.06

∑ wiθi (Campbell et al) -0.23 -2.18 -0.21

T-stat -1.11 -1.20 -0.05

R2(%) 0.55 2.55 3.29
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Table 10: Summary of Predictors
In this table, I report the AR1 coefficient of all the predictors used. Also I include the
correlation coefficient between each controlling predictors and the Pareto coefficients.
The controlling predictors in Welch and Goyal (2008) are defined as follows: bm is
the book to market ratio, dspr is the default spread, dp is the dividend price ratio, ep
is the earning prices ratio, ltr is the long term government bond return, ntis is the net
equity expansion ratio, svar is the stock variance, tspr is the term spread, corpr is the
corporate bond return.

Summary of Predictors
Description AR1 Corr with ξt

ξt granularity measure 0.97 1.00

bm book to market ratio 0.99 0.07

dspr default spread 0.97 0.27

dp dividend price ratio 0.99 -0.11

ep earning price ratio 0.99 0.04

ltr long term government bond return 0.05 0.01

ntis net equity expansion ratio 0.98 0.08

svar stock variance 0.40 -0.07

tspr term spread 0.96 0.11

corpr corporate bond return 0.11 0.01
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Table 11: Time series results controlling for other predictors.
In this table, I report the double variable regression results for the logged excess
market return log(rm,t+k) at various horizon k = 1, 12, 60.

log(rm,t+k) = constant + A log ξt + predictor

In Panel A,B,C, I report the results at different horizons and the other predictors are
controlled in each column for a bi-variate regression. The Pareto coefficient is de-
trended and a lower ξ implies a fatter tail, the hypothesize predictive relation should
be negative A < 0.
The controlling predictors in Welch and Goyal (2008) are defined as follows: bm is
the book to market ratio, dspr is the default spread, dp is the dividend price ratio, ep
is the earning prices ratio, ltr is the long term government bond return, ntis is the net
equity expansion ratio, svar is the stock variance, tspr is the term spread, corpr is the
corporate bond return.

Panel A: Predictors Controlled, 1 Month Horizon
bm dspr dp ep ltr ntis svar tspr corpr

log ζt -0.29 -0.34 -0.25 -0.29 -0.28 -0.27 -0.28 -0.30 -0.29
T-stat -2.13 -2.38 -1.86 -2.13 -2.22 -2.09 -2.14 -2.31 -2.30
predictor 0.13 0.20 0.26 0.22 0.37 -0.07 -0.16 0.26 0.52

T-stat 0.85 0.83 1.82 1.14 2.68 -0.36 -0.48 1.73 3.42

R2(%) 0.53 0.62 0.80 0.70 1.21 0.46 0.57 0.82 1.92

Panel B: Predictors Controlled, 12 Month Horizon
bm dspr dp ep ltr ntis svar tspr corpr

log ζt -2.15 -2.69 -1.65 -2.11 -2.07 -2.03 -2.02 -2.21 -2.08
T-stat -1.74 -2.12 -1.34 -1.78 -1.76 -1.71 -1.69 -1.90 -1.78
predictor 2.01 1.96 3.49 2.82 1.63 -0.43 0.68 3.04 1.96

T-stat 1.40 1.48 2.59 1.77 3.44 -0.23 0.94 2.45 4.00

R2(%) 3.31 3.07 6.57 4.89 2.74 1.74 1.80 5.46 3.22

Panel C: Predictors Controlled, 60 Month Horizon
bm dspr dp ep ltr ntis svar tspr corpr

log ζt -10.78 -13.31 -8.27 -10.63 -10.85 -10.95 -10.75 -11.21 -10.88
T-stat -3.56 -3.80 -3.06 -3.85 -3.44 -3.39 -3.40 -3.62 -3.46
predictor 6.32 7.11 14.24 8.86 1.84 -1.56 2.56 10.52 2.43

T-stat 1.97 2.47 5.79 2.03 1.56 -0.48 1.39 3.56 1.96

R2(%) 12.92 13.56 25.99 16.22 9.89 9.79 10.03 19.23 10.10
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Appendices

Appendix I Factor,Idiosyncratic Risk and Diversification
in a Standard APT

In this section, I give a proof of Lemma 1 and Lemma 2. Based on the factor model
in APT, we can decompose the covariance among n returns Σn into two parts, strong
covariance from factors Σn

f and covariance among idiosyncratic risk Σn
ε. We define factor

and idiosyncratic risk by covariance as in Chamberlain (1983):

Definition 1. A portfolio described in vector form w = [w1, .., wn] is well-diversified if:

lim
n→∞

n

∑
i

w2
i = 0. (I.1)

∑n
i w2

i measures the dispersion of the portfolio weights or variance among portfolio
weights. A well-diversified portfolio has zero weight dispersion at the limit of infinite as-
sets, meaning that all assets are roughly the same size. For example, an equal-weighted
portfolio is well-diversified since its size dispersion scales as 1/n: ∑n

i w2
i = 1/n. Based

on this definition, a proof of Lemma 1 is straightforward:
Proof of Lemma 1: If there exists an asset such that limn→∞ wi 6= 0, then the diversifica-
tion measure

lim
n→∞

w2
i 6= 0.

Therefore, to satisfy the diversification condition, it must be limn→∞ wi = 0, ∀i.
Now I proceed to the APT derivation. To prove the Lemma 2, We repeat the basic

setup in the Section 2.1 in matrix form and present the derivation of APT. There are n
firms in the whole asset space; each has a return:

r = E[r] + B f + ε, (I.2)
E[ε| f ] = 0. (I.3)

this leads to a variance decomposition:

Σn = BΣn
f B′ + Σn

ε. (I.4)

the term BΣn
f B′ is a variation of our factor definition: I perform an eigenvalue decom-

position to the defined factor covariance, where the factor loading is the eigenvector of
the covariance matrix. This method is consistent with Chamberlain (1983) and Chamber-
lain and Rothschild (1983), which generalize the assumptions in Ross (1976). Precisely,
they define factors and idiosyncratic risks by the eigenvalue of the covariance matrix. In
a market with n asset, let ρi(Σ), i = 1...n be the eigenvalues of a covariance matrix Σ,
sorted in descending order.

Definition 2. Σn
f have a factor structure if:
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∃k ≤ n, s.t. lim
n→∞

ρi=1..k(Σ
n) = ∞. (I.5)

The factor structure is defined by unbounded eigenvalues of the covariance or ”perva-
sive” components among returns. If there is one portfolio that correlates with sufficiently
many assets, then it is a factor. Idiosyncratic risk is defined by the complement:

Definition 3. Σn
ε is idiosyncratic if:

lim
n→∞

ρi(Σ
n) ≤ C, ∀i. (I.6)

In other words, covariance among assets can be decomposed into two parts, a strongly
correlated factor structure, and an idiosyncratic ”residual” variance. I hybridize these
general definitions with a standard APT model in the textbook of Connor and Korajczyk
(1995) and present the perspective that when diversification fails, idiosyncratic risk pro-
duces aggregate risk premium. The definition implies that there is no portfolio that
contains only idiosyncratic risk that could have a strong correlation with all the assets.

I further assume that there is a representative investor who has a CARA utility base
on the aggregate return u(w′r) such that u′′ < 0, constant. The Euler equation:

E[u′(w′r)r] = 1γ0. (I.7)

where γ0 is the reciprocal of the investor’s subjective discount. Inserting the return
equation (I.2) into the pricing formula gives:

E[r] = 1γ0 − B
E[u′(w′r) f ]

E[u′]
− E[u′(w′r)ε]

E[u′]
. (I.8)

Use taylor expansion to u′(w′r) at point u′(w′(E[r] + B f )) gives:

u′(w′r) ≈ u′(w′(E[r] + B f )) + u′′(w′(E[r] + B f ))w′ε. (I.9)

We can approximate the last term u′(w′r)ε by inserting the Taylor expansion result.
Given the assumption that factor is independent from ε, the last term E[u′(w′r)ε] is
simplified to:

E[u′(w′r)ε] ≈ γΣn
εwE[u′]. (I.10)

where the risk aversion coefficient is γ = −u′′
u′ > 0.

Define the factor risk premium τ = E[u′(w′r) f ]
E[u′] as the factor risk premium and reorga-

nize terms, we can have:
E[r] = 1γ0 + Bτ + Σn

εwγ. (I.11)

The covariance term COV(εi, ∑n
i wiεi) in (3) is stacked into the vector Σn

εw. The market
risk premium is:

E[rm] = w′E[r] = γ0 + w′Bτ + w′Σn
εwγ. (I.12)
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When the market portfolio is well-diversified, the granular risk premium eg(n) =
γVAR(∑n

i wiεi) = γw′Σn
εw converge to zero as n approaching infinity, which gives the

proof of Lemma 2.
Proof of Lemma 2: With diversification,

lim
n→∞

eg(n) = lim
n→∞

γw′Σn
εw ≤ γ lim

n→∞

n

∑
i=1

w2
i ρ1(Σ

n
ε) = 0. (I.13)

Furthermore, the vector term Σn
εw in the expected return of each asset is smaller or equal

to w′Σn
εw, and hence converge to zero. As a result,

lim
n→∞

E[r] = 1γ0 + Bτ.

Appendix II Derivation using a Pareto Distribution

I show the proof of Lemma 3 as the case of the thin-tail distribution.
Proof of Lemma 3: Recall that,

lim
n→∞ ∑ w2

i = lim
n→∞ ∑

(Xi)
2

(∑ Xi)2 = lim
n→∞

1
n

1/n ∑(Xi)
2

(1/n ∑ Xi)2 . (II.1)

If the first and second moments of Xi is finite, then:

lim
n→∞

1/n ∑(Xi)
2 = E[X2],

lim
n→∞

1/n ∑ Xi = E[X].

Therefore, the diversification measure converges to:

lim
n→∞ ∑ w2

i = lim
n→∞

1
n

E[(Xi)
2]

E[Xi]2
= 0.

Now I use a Pareto distribution to derive the violation of the APT assumption when
ζ < 2. I start with the proof of Lemma 4. Recall that the maximum market weight wmax
equals:

wmax = Xmax/
n

∑
i=1

Xi

The derivation for wmax is invariant to re-scale of Xi. Therefore, for simplicity, I normal-
ize the lower bound of Pareto distribution xm to equal one such that:

P(Xi > x) = x−ζ , x > 1 (II.2)

The limiting distribution of the maximum value from an i.i.d sample following any
distribution is derived by the Fisher–Tippett–Gnedenko theorem (see Gnedenko (1943)).
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I use this theorem on the Pareto distribution to show that the Xmax converges to a Frechet
distribution in the following lemma:

Lemma 8. If the firm size Xi follows an i.i.d Pareto distribution such that

P(Xi > x) = x−ζ , x > 1.

Define an = n1/ζ , then the maximum value Xmax = max{X1,...,n} has a limiting distribution
such that:

lim
n→∞

P(Xmax/an ≤ x) = lim
n→∞

Fn(anx) = e−x−ζ
.

Xmax/an converges to a random variable Fζ that follows a Frechet distribution with tail parameter
ζ.

Proof of Lemma 8: The proof is an implication of the Fisher–Tippett–Gnedenko theorem.
By definition,

F(anx) = 1− (anx)−ζ = 1− 1
n

x−ζ .

The limiting distribution of Xmax/an is given by:

lim
n→∞

P(Xmax/an ≤ x) = lim
n→∞

Fn(anx) = lim
n→∞

(
1− 1

n
x−ζ

)n
= e−x−ζ

.

The convergence of ∑ Xi when ζ < 2 is given by the stable law, which is a generalized
convergence theorem for infinite-variance random variables (Durrett (2019), Theorem
3.8.2.):

Theorem. (Stable Law) Suppose X1,X2, . . . are i.i.d. with a distribution that satisfies
(i) limx→∞ P(X1 > x)/P(|X1| > x) = θ ∈ [0, 1]
(ii)P(|X1| > x) = x−αL(x)
where α < 2 and L is slowly varying. Let Sn = ∑n

i=1 Xi
an = inf{x : P(|X1| > x) ≤ n−1} and bn = nE(X11|X1|≤an)
As n→ ∞, (Sn − bn)/an ⇒ Y where Y has a non-degenerate distribution.

I apply this theorem to the Pareto distribution. The random variable Y, in this context,
have the shape parameter ζ. I denote the convergence to be Yζ and specify how the
characteristic function of Yζ in the following derivations. For the Pareto distribution in
(II.2), θ = 1, α = ζ and L(x) = 1, such that

an = n1/ζ ,

and

bn = n
∫ n1/ζ

1
ζx−ζdx.

The magnitude of bn depends on the range of ζ such that:
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bn =


n
(

n1/ζ−1 − ζ

1− ζ

)
≈ n1/ζ = an ζ < 1

n
(

n1/ζ−1 − ζ

1− ζ

)
≈ n

ζ

ζ − 1
= nE[X] ζ > 1

n log n ζ = 1

(II.3)

With these calculations, I derive the convergence of ∑ Xi:

lim
n→∞ ∑ Xi = lim

n→∞
(anYζ + bn),

such that,

lim
n→∞ ∑ Xi =


lim

n→∞
n1/ζ(Yζ + 1) ζ < 1

lim
n→∞

Yζ + log n ζ = 1

lim
n→∞

n1/ζYζ + nE[X] ζ > 1

(II.4)

where the characteristic function of Yζ , ϕYζ
(t), is a stable distribution with shape param-

eter ζ:

ϕYζ
(t) = exp{tµi− σ|t|ζ

(
1 + sign(t)wζ(t)i

)
}

where sign(t) is the sign function and wt is a function determined by ζ:

wζ(t) = tan(πζ/2), ζ 6= 1 (II.5)
= π/2 log |t|, ζ 6= 1 (II.6)

A distribution with this type of characteristic function is known as a stable distribution.
µ and σ are the location and scale parameters, and the shape parameter is determined
by ζ, the Pareto coefficient of X.

Combining the results above gives the convergence of wmax = Xmax/ ∑ Xi as in
Lemma 4:

lim
n→∞

wmax = Xmax/
n

∑
i=1

Xi =



Fζ

Yζ + 1
ξ < 1

lim
n→∞

Fζ

Yζ + log n
ξ = 1

lim
n→∞

Fζ

Yζ + n1−1/ζ E[X]
ξ > 1

(II.7)

As a comparison of the maximum result, I derive the limiting convergence of Xmin =
min{X1,...,n} to illustrate how fast small firms in the Pareto distribution would have their
market converge to zero and hence does violate the APT assumption.
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Lemma 9. If the firm size Xi follows an i.i.d Pareto distribution such that

P(Xi > x) = x−ζ , x > 1.

The minimum value Xmin = min{X1,...,n} has a limiting distribution such that:

lim
n→∞

P(n(Xmin − 1) > x) = lim
n→∞

Pn(X > x/n + 1) = e−xζ .

Therefore, n(Xmin − 1) converges to a random variable expζ that follows a exponential distribu-
tion with shape parameter ζ.

Proof of Lemma 9: The proof of this lemma is quite straightforward since:

lim
n→∞

P(n(Xmin − 1) > x) = lim
n→∞

Pn(X > x/n + 1) = lim
n→∞

[
(1/nx + 1)n]−ζ

= e−xζ .

Therefore, the cumulative density function of n(Xmin − 1) is 1− e−xζ as n approaches
infinity, which is an exponential distribution. In other words, the minimum value Xmin
decreases with n at the rate of 1/n. As a result, one can show that the minimum market
weight wmin converges to:

lim
n→∞

wmin = Xmin/
n

∑
i=1

Xi =



lim
n→∞

1 + expζ /n

n1/ζ(Yζ + 1)
ξ < 1

lim
n→∞

1 + expζ /n

Yζ + log n
ξ = 1

lim
n→∞

1 + expζ /n

n1/ζYζ + nE[X]
ξ > 1

(II.8)

As a comparison of the maximum results, the minimum market weight always con-
verges to zero faster than 1/n, which indicates that small firms do not violate the APT
assumption.

The proof of Lemma 5 is another implication of the stable law to derive the conver-
gence of ∑ X2

i . Now, since X2
i also follow a Pareto distribution with index ζ/2 < 1, the

convergence is:

lim
n→∞ ∑ X2

i = lim
n→∞

n2/ζ(Yζ/2 + 1). (II.9)

Similarly, the characteristic function of Yζ/2 is a stable distribution with shape parameter
ζ/2:

ϕYζ/2 = exp{tµi− σ|t|ζ/2
(

1 + sign(t)wζ/2(t)i
)
}.

Proof of Lemma 5: Combining the results in (II.4) and (II.9) gives the convergence of
∑n

i w2
i :
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lim
n→∞ ∑ w2

i =



Yζ/2 + 1
(Yζ + 1)2 ζ < 1

lim
n→∞

Yζ/2+1

(Yζ + log n)2 ζ = 1

lim
n→∞

Yζ/2 + 1
(Yζ + n1−1/ζ E[X])2 ζ > 1

(II.10)

The proof of Proposition 6 and Proposition 7 is derived by (I.11) and (I.12) with
assuming independence among εi. Given the value of ζ is around 1, the results in Lemma
5 and Lemma 4 induces asset pricing implications in Proposition 6 and Proposition 7.

Appendix III Estimation of the Pareto distribution

The main results of this paper hinge on the Pareto coefficient ζ value, which quantifies
the level of granularity and the associating asset pricing implication. When Xi=1...n are
i.i.d and follows the exact Pareto distribution in (7) such that

P(Xi > x) =
(

x
xm

)−ξ

, x > xm.

The Pareto distribution implicitly assumes that only firms with market values larger
than xm follow a Pareto distribution. Selecting a threshold to estimate the Pareto distri-
bution excludes the small firms in the sample, which is consistent with the theoretical
motivation that large firms induce violations of the APT models.

I estimate the tail parameter ζ of the Pareto distribution using the Hill estimator (see
Hill (1975)). At each month, I sort all the n firm sizes in a descending order Xi=1,...,n and
select a threshold value xm = Xk to use the largest k firms for estimating ζ. The Hill
estimator is:

ζ =

{
1/k

k

∑
i=1

(log Xi − log Xk)

}−1

. (III.1)

this estimator can be interpreted as a maximum likelihood estimator of ζ conditioning
on a known minimum threshold xm = Xk, which has a simple to derive asymptotic
inference property as k → ∞. Therefore, the literature typically selects the threshold
position k by fixing a cutoff ratio k/n = 5%, 10%... to make k proportional to the total
number of assets n and conduct the statistical inference by the asymptotic property of
the estimator as n→ ∞.

I find that the large firms in the stock market are fitted well by the Hill estimator of
the Pareto distribution, which justifies my theoretical derivations6. Specifically, matching
the survival probability in (7) with the frequency in data gives,

6This assumption should not affect the theoretical results in Section 2.2 since small firms only account for a tiny fraction of the
total value. Furthermore, I can derive the same theoretical results when the whole sample is drawn from a mixture of the Pareto
distribution and a thin tail distribution. The proof is available upon request.
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i/n ≈
(

Xi

Xk

)−ζ

.

The logarithm of this equation implies a linear relationship between logged rank i and
size Xi in (7) since:

log(i/n) ≈ log

((
Xi

Xk

)−ζ
)

= −ζ
(
log Xi − log Xk

)
.

Therefore, to check the goodness of fitting, I plot the logged rank-size plot of the largest
10% firms in the December of 2020 in Figure 9. I fit the linear relationship in the red
dash line using the Hill estimator of ζ̂ = 0.94, which suggests a significant level of the fat
tail and the APT violations as implied by my model. Meanwhile, I find a slight deviation
from the straight line with concavity. The concavity comes from including firms smaller
than the size implied by the Pareto distribution, which might induce a downward bias
of the Hill estimator.

For time-series implication in my paper, the cutoff selection affects the predictability
of ζ on market returns as motivated in (13):

log(rm,t+1) = constant + controls + A log ζt.

A loose cutoff ratio k/n (large k) would include more firms and reduce the estimator’s
variance for better statistical power of my time-series test. However, a loose cutoff also
generates a downward bias of ζ since it could include small firms in the sample that may
not follow the Pareto distribution.

Due to the downward bias, a time-series estimate of ζ would be non-stationary since
its variance and magnitude depend on the number of assets n. I estimate ζ using the
largest 10% firms in each month to form a time-series of ζt and plot it in Figure 10. I
plot the estimate of ζt in the blue line, together with the confidence interval (+/- two
times the standard errors of ζt as a maximum likelihood estimator) in the two red lines
below and above. Figure 10 shows that the estimates of ζ̂t have higher standard errors
at the beginning of the sample period due to fewer observations. As the number of
firms included increases over time, the standard errors decrease, but the downward bias
increases due to more small firms included in the estimation. Notably, there are two
downside jumps of ζt in June 1962 and January 1973 due to the merging of AMEX-listed
and NASDAQ-listed firms. In summary, I find that the average estimate of ζ̂t using the
largest 10 % firms is around 1, which verifies the significant level of granularity used
in my asset pricing results. However, the time-series estimate tends to have downward
biases and hence a decreasing trend due to the increasing n in the sample period.

To construct a stationary estimate of ζt, I firstly test a the relation between log ζ̂t and
the logged number of firms log nt in the data each month presented in Figure 11. I
take advantage of the relation between log ζ̂t and log nt and subtract the non-stationary
trend due to an increasing number of firms over the sample period and then take the
de-trended ζt into (13) to estimate:
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log(rm,t+1) = constant + controls + A log ζt(debias)

To adjust for the bias-variance issue, a vast amount of papers assume a more general
class of fat tail distribution to develop the bias-correction methods accordingly (see Hall
and Welsh (1985), Diebold, Schuermann, and Stroughair (1998), Peng (1998), Beirlant
et al. (1999), Feuerverger and Hall (1999), Gomesa and Martins (2002), Alves, Gomes, and
de Haan (2003)). Instead of applying these bias-correction methods for ζ̂t at each time
separately, my ”de-bias” procedure takes advantage of the co-integration and intends to
improve the power of testing whether the level of fat tail predicts the market returns.

Appendix IV Out-of-sample predictive results

I check the out-of-sample predictive power of my model and report results in Table V.1.
I estimate the single variable case using log ζt ,and bi-variate cases adding time-varying
idiosyncratic risk and other predictors surveyed in Welch and Goyal (2008) at horizon
k = 1, 12, 60. For each set of predictors I test, I compute the Out-of-sample R2 (Oos R2) by
comparing the predictive error of each set of predictors to the historical mean computed
by a 240-month rolling window. I also perform the Diebold-Mariano test (DM) to check
whether my predictive model outperform the historical mean. The lag number h used
for DM tests in different horizon k is computed by the rule of thumb h = k1/3 + 1. For
using log ζt only, the out-of-sample R2 reaches 1.50 percent at the 12-month horizon and
13.34 percent (with a significant T-stat 2.07) at the 60-month horizon, which indicates a
robust predictive power of ζ in the long period. Combining log ζt with other predictors
also displays out-of-sample predictive power at the long-horizon. I highlight the list of
predictors that have positive out-of-sample R2 at k = 60 ahead with a significant DM
test T-stat.

Appendix V Additional figures and tables
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Figure 9: Logged rank-size plot in December 2020 In this figure, I plot the logged rank-
size plot of the largest 10% firms in December 2020. The red dash line show the fitted
relation implied by the Pareto distribution. The 10 largest firms are highlighted.
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Figure 10: Pareto Coefficient Estimate of Market Value per Month At the end of each
month, I estimate the tail parameter ζ of Pareto distribution using the Hill estimator (see
Hill (1975)) at a monthly frequency. I use the largest 10 % firms to illustrate a trade-off
between bias and variance of the Hill estimator. I plot the estimate of ζt in blue line,
together with the confidence interval (+/- two times the standard errors of ζt as a maxi-
mum likelihood estimator) in the two red lines below and above. The two vertical dash
lines in the plot mark the expansion of n due to merging of security exchanges: AMEX in
June 1962 and NASDAQ in January 1973. The shaded areas are NBER recession periods.
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Figure 11: Pareto Coefficient Estimate of Market Value per Month I plot the co-
integration relation between the logged Pareto coefficient log ζ (estimated from the
largest 10 % firms) and logged number of firms n. Both the time series are normal-
ized to have mean zero and unit variance with their raw magnitudes displayed on two
separate sets of ticks on y axis.
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Table V.1: Out-of-sample prediction results.
I summarize the out-of-sample predictive power of all the sets of predictor I test in this
paper. I compute the Out-of-sample R2 by comparing the predictive error of each set
of predictors to the historical mean computed by a 240-month rolling window. I also
perform the Diebold-Mariano test to check whether my predictive model outperform
the historical mean.

predictor \ horizon log rm,t→t+1 log rm,t→t+12 log rm,t→t+60

log ζ OosR2 -0.17 1.50 13.34

DM -0.17 0.31 2.07

log ζ, ∑ wiθi(FF3) OosR2 -0.20 -1.69 0.80

DM -0.99 -0.91 0.18

log ζ, ∑ wiθi(PCA) OosR2 -2.85 -10.20 4.72

DM -1.73 -1.11 0.47

log ζ, ∑ wiθi(Campbell et al) OosR2 -2.69 -7.11 3.04

DM -1.55 -0.76 0.38

log ζ, bm OosR2 -1.47 1.04 17.60
DM -1.43 0.17 1.98

log ζ, dspr OosR2 -1.79 -3.27 15.48
DM -0.63 -0.58 1.89

log ζ, dp OosR2
0.05 12.92 40.60

DM 0.05 2.19 4.16
log ζ, ep OosR2 -2.24 -3.48 10.52

DM -0.91 -0.48 1.12

log ζ, ltr OosR2
0.30 1.81 13.41

DM 0.21 0.38 2.05
log ζ, ntis OosR2 -1.04 3.17 10.26

DM -0.67 0.35 1.40

log ζ, svar OosR2 -7.28 -14.22 -15.09

DM -1.82 -0.96 -0.63

log ζ, tspr OosR2
0.06 6.64 22.64

DM 0.04 0.89 2.51
log ζ, corpr OosR2

0.66 2.01 13.44
DM 0.43 0.41 2.06
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